Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nucleic Acids Res ; 32(15): 4596-608, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15333692

RESUMO

Enhancer-dependent transcriptional activators that act upon the sigma54 bacterial RNA polymerase holoenzyme belong to the extensive AAA+ superfamily of mechanochemical ATPases. Formation and collapse of the transition state for ATP hydrolysis engenders direct interactions between AAA+ activators and the sigma54 factor, required for RNA polymerase isomerization. A DNA fork junction structure present within closed complexes serves as a nucleation point for the DNA melting seen in open promoter complexes and restricts spontaneous activator-independent RNA polymerase isomerization. We now provide physical evidence showing that the ADP.AlF(x) bound form of the AAA+ domain of the transcriptional activator protein PspF changes interactions between sigma54-RNA polymerase and a DNA fork junction structure present in the closed promoter complex. The results suggest that one functional state of the nucleotide-bound activator serves to alter DNA binding by sigma54 and sigma54-RNA polymerase and appears to drive events that precede DNA opening. Clear evidence for a DNA-interacting activity in the AAA+ domain of PspF was obtained, suggesting that PspF may make a direct contact to the DNA component of a basal promoter complex to promote changes in sigma54-RNA polymerase-DNA interactions that favour open complex formation. We also provide evidence for two distinct closed promoter complexes with differing stabilities.


Assuntos
Difosfato de Adenosina/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator sigma/metabolismo , Transativadores/metabolismo , Adenosina Trifosfatases/metabolismo , Compostos de Alumínio/metabolismo , Sítios de Ligação , Pegada de DNA , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Fluoretos/metabolismo , Substâncias Macromoleculares , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54 , Transativadores/química
3.
Nat Struct Biol ; 7(7): 594-601, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10876247

RESUMO

Multisubunit RNA polymerases are targets of sophisticated signal transduction pathways that link environmental or temporal cues to changes in gene expression. Here we show that the sigma 54 protein (sigma54), responsible for promoter specific binding by bacterial RNA polymerase, undergoes a nucleotide hydrolysis dependent isomerization on DNA. Changes in protein structure are evident. The isomerization has all the known requirements of sigma 54-dependent transcription, including a dependence on enhancer binding activator proteins and occurs independently of the core RNA polymerase. We suggest that activator driven changes in sigma54 conformation trigger the conversion of a transcriptionally silent RNA polymerase conformation to one able to interact productively with template DNA. Our results illustrate the types of changes that must occur for multisubunit complexes to manipulate DNA, and show that transcription activators can remodel key nucleoprotein structures to achieve direct activation of transcription.


Assuntos
DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Klebsiella pneumoniae , Regiões Promotoras Genéticas/genética , Fator sigma/química , Fator sigma/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Pegada de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Genes Bacterianos/genética , Holoenzimas/química , Holoenzimas/metabolismo , Hidrólise , Isomerismo , Klebsiella pneumoniae/genética , Modelos Genéticos , Mutação/genética , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Nucleotídeos/genética , Nucleotídeos/metabolismo , Conformação Proteica , RNA Polimerase Sigma 54 , Sinorhizobium meliloti/genética , Moldes Genéticos , Termodinâmica
4.
J Biol Chem ; 274(36): 25285-90, 1999 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-10464252

RESUMO

Control of transcription frequently involves the direct interaction of activators with RNA polymerase. In bacteria, the formation of stable open promoter complexes by the sigma(54) RNA polymerase is critically dependent on sigma(54) amino Region I sequences. Their presence correlates with activator dependence, and removal allows the holoenzyme to engage productively with melted DNA independently of the activator. Using purified Region I sequences and holoenzymes containing full-length or Region I-deleted sigma(54), we have explored the involvement of Region I in transcription activation. Results show that Region I in trans inhibits a reversible conformational change in the holoenzyme believed to be polymerase isomerization. Evidence is presented indicating that the holoenzyme (and not the promoter DNA per se) is one interacting target used by Region I in preventing polymerase isomerization. Activator overcomes this inhibition in a reaction requiring nucleotide hydrolysis. Region I in trans is able to inhibit activated transcription by the holoenzyme containing full-length sigma(54). Inhibition appeared to be noncompetitive with respect to the activator, suggesting that a direct activator interaction occurs with parts of the holoenzyme outside Region I. Stabilization of isomerized holoenzyme bound to melted DNA by Region I in trans occurs largely independently of the initiating nucleotide, suggesting a role for Region I in maintaining the open complex.


Assuntos
Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Fator sigma/genética , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , RNA Polimerase Sigma 54 , Fator sigma/metabolismo , Ativação Transcricional
5.
Mol Microbiol ; 33(4): 873-85, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10447895

RESUMO

sigmaN (sigma54) RNA polymerase holoenzyme closed complexes isomerize to open complexes in a reaction requiring nucleoside triphosphate hydrolysis by enhancer binding activator proteins. Here, we characterize Klebsiella pneumoniae sigmaN mutants, altered in the carboxy DNA-binding domain (F354A/F355A, F402A, F403A and F402A/F403A), that fail in activator-dependent transcription. The mutant holoenzymes have altered activator-dependent interactions with promoter sequences that normally become melted. Activator-dependent stable complexes accumulated slowly in vitro (F402A) and to a reduced final level (F403A, F402A/F403A, F354A/F355A). Similar results were obtained in an assay of activator-independent stable complex formation. Premelted templates did not rescue the mutants for stable preinitiation complex formation but did for deleted region I sigmaN, suggesting different defects. The DNA-binding domain substitutions are within sigmaN sequences previously shown to be buried upon formation of the wild-type holoenzyme or closed complex, suggesting that, in the mutants, alteration of the sigmaN-core and sigmaN-DNA interfaces has occurred to change holoenzyme activity. Core-binding assays with the mutant sigmas support this view. Interestingly, an internal deletion form of sigmaN lacking the major core binding determinant was able to assemble into holoenzyme and, although unable to support activator-dependent transcription, formed a stable activator-independent holoenzyme promoter complex on premelted DNA templates.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/genética , Klebsiella pneumoniae/genética , Fator sigma/genética , Sítios de Ligação , Pegada de DNA , DNA Super-Helicoidal/genética , Mutação , Ácidos Nucleicos Heteroduplexes , Regiões Promotoras Genéticas , RNA Polimerase Sigma 54 , Endonucleases Específicas para DNA e RNA de Cadeia Simples , Sinorhizobium meliloti/genética , Ésteres do Ácido Sulfúrico , Moldes Genéticos , Ativação Transcricional
6.
Mol Microbiol ; 24(3): 653-64, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9179857

RESUMO

Enhancer-dependent transcription in bacteria requires the alternative transcription factor sigma N (sigma 54), which forms an RNA polymerase holoenzyme that binds promoters as a transcriptionally inactive complex. We have examined the structure of sigma N by circular dichroism (CD) analysis. The sigma N protein and its domains are well structured in the absence of the core RNA polymerase subunits or promoter DNA. Denaturation of sigma N by temperature as followed by changes in CD shows a concomitant loss of secondary and tertiary structures with a melting temperature of 36 degrees C. The secondary structure displays a two-state melting curve with a second Tm of 85 degrees C. The amino-terminal Region I activation domain together with the acidic Region II does not contribute to the two-state melting. In marked contrast, the integrity of the C-terminal DNA-binding domain is required for the two-state melting. Measurements of pKb also demonstrated that a C-terminal part of sigma N, but not regions I or I + II, is required for the structural integrity of sigma N at high pH. Measurements of pKa suggested that alpha-helical structures are important in sigma N for the establishment of tertiary structural elements. The tertiary structure near ultraviolet CD signals of sigma N do not require regions I or I + II but were strongly diminished by C-terminal truncation of sigma N. Promoter DNA binding resulted in a conformational change in sigma N, permitting the determination of a binding constant. A typical B-DNA conformation was adopted by the promoter DNA. Implications for the modular domain organization of sigma N, the function of C-terminal sequences, and domain communication and its role in activation of transcription are discussed.


Assuntos
Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/química , Fator sigma/química , Sequência de Bases , Dicroísmo Circular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Histidina/química , Concentração de Íons de Hidrogênio , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Estrutura Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54 , Fator sigma/genética , Fator sigma/metabolismo , Tirosina/química
7.
Proc Natl Acad Sci U S A ; 94(10): 5006-11, 1997 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-9144180

RESUMO

The sigma-N (sigmaN) subunit of the bacterial RNA polymerase is a sequence specific DNA-binding protein. The RNA polymerase holoenzyme formed with sigmaN binds to promoters in an inactive form and only initiates transcription when activated by enhancer-binding positive control proteins. We now provide evidence to show that the DNA-binding activity of sigmaN involves two distinct domains: a C-terminal DNA-binding domain that directly contacts DNA and an adjacent domain that enhances DNA-binding activity. The sequences required for the enhancement of DNA binding can be separated from the sequences required for core RNA polymerase binding. These results provide strong evidence for communication between domains within a transcription factor, likely to be important for the function of sigmaN in enhancer-dependent transcription.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Oxirredutases , Fator sigma/química , Fator sigma/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ligação Competitiva , Substâncias Macromoleculares , Dados de Sequência Molecular , Nitrogenase/genética , Fragmentos de Peptídeos/química , Regiões Promotoras Genéticas , RNA Polimerase Sigma 54 , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteínas da Matriz Viral/biossíntese
8.
Nucleic Acids Res ; 18(7): 1693-701, 1990 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-2186362

RESUMO

The Klebsiella pneumoniae nifU promoter is positively controlled by the NifA protein and requires a form of RNA polymerase holoenzyme containing the rpoN encoded sigma factor, sigma 54. Occupancy of the K. pneumoniae nifU promoter by NifA was examined using in vivo dimethyl sulphate footprinting. Three binding sites for NifA (Upstream Activator Sequences, UASs 1, 2 and 3) located at -125, -116 and -72 were identified which conform to the UAS consensus sequence TGT-N10-ACA. An additional NifA binding site was identified at position -90. The UASs located at -125 (UAS1) and -116 (UAS2) overlap and do not appear to bind NifA as independent sites. They may represent a NifA binding site interacting with two NifA dimers. UAS3 is located at -72, and abuts a binding site for integration host factor (IHF) and is not normally highly occupied by NifA. In the absence of IHF UAS3 showed increased occupancy by NifA. Mutational and footprinting analysis of the three UASs indicates (1) IHF and NifA can compete for binding and that this competition influences the level of expression from the nifU promoter (2) that UAS2 is a principle sequence of the UAS 1,2 region required for activation and (3) that none of the NifA binding sites interacts with NifA independently. In vivo KMnO4 footprinting demonstrated that NifA catalyses open complex formation at the nifU promoter. IHF was required for maximal expression from the nifU and nifH promoters in Escherichia coli, and for the establishment of a Nif+ phenotype in E. coli from the nif plasmid pRD1.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Klebsiella pneumoniae/genética , Fixação de Nitrogênio/genética , Regiões Promotoras Genéticas , Fatores de Transcrição , Sequência de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , Enterobacter/genética , Escherichia coli/genética , Dados de Sequência Molecular , Mapeamento de Nucleotídeos , Sondas de Oligonucleotídeos , Plasmídeos , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...