Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Dalton Trans ; 53(12): 5507-5520, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38416047

RESUMO

A novel family of cobalt(II) compounds with tridentate pyridine-2,6-diiminephenyl type ligands featuring electron-withdrawing substituents of general formula [Co(n-XPhPDI)2](ClO4)2·S [n-XPhPDI = 2,6-bis(N-n-halophenylformimidoyl)pyridine with n = 4 (1-3) and 3 (4); X = I (1), Br (2 and 4) and Cl (3); S = MeCN (1 and 2) and EtOAc (3)] has been synthesised and characterised by single-crystal X-ray diffraction, electron paramagnetic resonance, and static (dc) and dynamic (ac) magnetic measurements combined with theoretical calculations. The structures of 1-4 consist of mononuclear bis(chelating) cobalt(II) complex cations, [CoII(n-XPhPDI)2]2+, perchlorate anions, and acetonitrile (1 and 2) or ethyl acetate (3) molecules of crystallisation. This unique series of mononuclear six-coordinate octahedral cobalt(II) complexes displays both thermally-induced low-spin (LS)/high-spin (HS) transition and field-induced slow magnetic relaxation in both LS and HS states. A complete LS ↔ HS transition occurs for 1 and 2, while it is incomplete for 4, one-third of the complexes being HS at low temperatures. In contrast, 3 remains HS in all the temperature range. 1 and 2 show dual spin relaxation dynamics under the presence of an applied dc magnetic field (Hdc), with the occurrence of faster- (FR) and slower-relaxing (SR) processes at lower (Hdc = 1.0 kOe) and higher fields (Hdc = 2.5 kOe), respectively. On the contrary, 3 and 4 exhibit only SR and FR relaxations, regardless of Hdc. Overall, the distinct field-dependence of the single-molecule magnet (SMM) behaviour along with this family of spin-crossover (SCO) cobalt(II)-n-XPhPDI complexes is dominated by Raman mechanisms and, occasionally, with additional temperature-independent Intra-Kramer [LS or HS (D > 0)] or Quantum Tunneling of Magnetisation mechanisms [HS (D < 0)] also contributing.

2.
Dalton Trans ; 52(34): 11922-11933, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37574905

RESUMO

A reaction between CoCl2 and L3-(CO2-)2 (2 : 1 stoichiometry) in CH3OH affords a discrete complex [CoII4-{L3-(CO2-)2}2(µ3-OCH3)2(CH3OH)2(H2O)2Cl2] (1) [L3-(CO2-)2 = 3-[N-{2-(pyridin-2-yl)methyl}amino]-bis(propionate)]. The structure of 1 reveals two terminal mononuclear CoII{L3-(CO2-)2}Cl units connected by a dimeric CoII2(µ3-OCH3)2(CH3OH)2(H2O) unit present in the centre through two methoxo (µ3-OCH3)- and two carboxylate (µ-1,1-OCO-) bridges affording a tetranuclear coordination cluster of Co(II) with a defective dicubane topology. In 1, Co1 (terminal) has distorted octahedral CoIIN2O3Cl and the central Co2 has CoIIO6 coordination. Such coordination arrangements afford the observed topology. Variable-temperature magnetic studies reveal anti-ferromagnetic coupling in 1. Three magnetic exchange interactions (one anti-ferromagnetic and two ferromagnetic: J1 = +3.3 cm-1 (Co⋯Co 3.176 Å; µ-1,1-OCO- and µ3-OCH3 bridges), J2 = -2.5 cm-1 (Co⋯Co 3.228 Å; µ-1-OCO- and µ3-OCH3 bridges) and J3 = +10.6 cm-1 (Co⋯Co 3.084 Å; two µ3-OCH3 bridges)) have been identified, with the inclusion of the orbital reduction parameter (α = Aκ = 1.38), spin-orbit coupling (λ = -158 cm-1) and axial distortion (energy gap Δ = -975 cm-1 between singlet and doublet levels), rationalized by density functional theory (DFT) calculations.

3.
Chem Sci ; 14(33): 8850-8859, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37621442

RESUMO

The ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study focuses on two mononuclear octahedral cobalt(ii) complexes of formula {[CoII(HL)2][CoII(HL)L]}(ClO4)3·9H2O (1) and [CoIIL2]·5H2O (2) [HL = 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine], isolated as a mixed protonated/hemiprotonated cationic salt or a deprotonated neutral species. This pair of pH isomers constitutes a remarkable example of a dynamic molecular system exhibiting reversible changes in luminescence, redox, and magnetic (spin crossover and spin dynamics) properties as a result of ligand deprotonation, either in solution or solid state. In this last case, the thermal-assisted spin transition coexists with the field-induced magnetisation blockage of "faster" or "slower" relaxing low-spin CoII ions in 1 or 2, respectively. In addition, pH-reversible control of the acid-base equilibrium among dicationic protonated, cationic hemiprotonated, and neutral deprotonated forms in solution enhances luminescence in the UV region. Besides, the reversibility of the one-electron oxidation of the paramagnetic low-spin CoII into the diamagnetic low-spin CoIII ion is partially lost and completely restored by pH decreasing and increasing. The fine-tuning of the optical, redox, and magnetic properties in this novel class of pH-responsive, spin crossover molecular nanomagnets offers fascinating possibilities for advanced multifunctional and multiresponsive magnetic devices for molecular spintronics and quantum computing such as pH-effect spin quantum transformers.

4.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298899

RESUMO

Two mononuclear nickel(II) complexes of the formula [Ni(terpyCOOH)2](ClO4)2∙4H2O (1) and [Ni(terpyepy)2](ClO4)2 MeOH (2) [terpyCOOH = 4'-carboxyl-2,2':6',2″-terpyridine and terpyepy = 4'-[(2-pyridin-4-yl)ethynyl]-2,2':6',2″-terpyridine] have been prepared and their structures determined by single-crystal X-ray diffraction. Complexes 1 and 2 are mononuclear compounds, where the nickel(II) ions are six-coordinate by the six nitrogen atoms from two tridentate terpy moieties. The mean values of the equatorial Ni-N bond distances [2.11(1) and 2.12(1) Å for Ni(1) at 1 and 2, respectively, are somewhat longer than the axial ones [2.008(6) and 2.003(6) Å (1)/2.000(1) and 1.999(1) Å (2)]. The values of the shortest intermolecular nickel-nickel separation are 9.422(1) (1) and 8.901(1) Å (2). Variable-temperature (1.9-200 K) direct current (dc) magnetic susceptibility measurements on polycrystalline samples of 1 and 2 reveal a Curie law behavior in the high-temperature range, which corresponds to magnetically isolated spin triplets, the downturn of the χMT product at lower temperatures being due to zero-field splitting effects (D). Values of D equal to -6.0 (1) and -4.7 cm-1 (2) were obtained through the joint analysis of the magnetic susceptibility data and the field dependence of the magnetization. These results from magnetometry were supported by theoretical calculations. Alternating current (ac) magnetic susceptibility measurements of 1 and 2 in the temperature range 2.0-5.5 K show the occurrence of incipient out-phase signals under applied dc fields, a phenomenon that is characteristic of field-induced Single-Molecule Magnet (SMM) behavior, which herein concerns the 2 mononuclear nickel(II) complexes. This slow relaxation of the magnetization in 1 and 2 has its origin in the axial compression of the octahedral surrounding at their nickel(II) ions that leads to negative values of D. A combination of an Orbach and a direct mechanism accounts for the field-dependent relation phenomena in 1 and 2.


Assuntos
Imãs , Níquel , Níquel/química , Modelos Moleculares , Cristalografia por Raios X , Íons
5.
Nat Commun ; 14(1): 1887, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019909

RESUMO

Resident memory T cells (TRM) present at the respiratory tract may be essential to enhance early SARS-CoV-2 viral clearance, thus limiting viral infection and disease. While long-term antigen-specific TRM are detectable beyond 11 months in the lung of convalescent COVID-19 patients, it is unknown if mRNA vaccination encoding for the SARS-CoV-2 S-protein can induce this frontline protection. Here we show that the frequency of CD4+ T cells secreting IFNγ in response to S-peptides is variable but overall similar in the lung of mRNA-vaccinated patients compared to convalescent-infected patients. However, in vaccinated patients, lung responses present less frequently a TRM phenotype compared to convalescent infected individuals and polyfunctional CD107a+ IFNγ+ TRM are virtually absent in vaccinated patients. These data indicate that mRNA vaccination induces specific T cell responses to SARS-CoV-2 in the lung parenchyma, although to a limited extend. It remains to be determined whether these vaccine-induced responses contribute to overall COVID-19 control.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Células T de Memória , Memória Imunológica , Pulmão , Vacinação , Anticorpos Antivirais
6.
Neurology ; 100(18): e1944-e1954, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36931726

RESUMO

BACKGROUND AND OBJECTIVES: Real-time quaking-induced conversion (RT-QuIC) assay detects misfolded α-synuclein (AS) in the skin and CSF of patients with the synucleinopathies Parkinson disease and dementia with Lewy bodies. Isolated REM sleep behavior disorder (IRBD) constitutes the prodromal stage of these synucleinopathies. We aimed to compare the ability of RT-QuIC to identify AS in the skin and CSF of patients with IRBD. METHODS: This was a cross-sectional study where consecutive patients with polysomnographic-confirmed IRBD and age-matched controls without RBD underwent skin biopsy and lumbar puncture the same day. Three-millimeter skin punch biopsies were obtained bilaterally in the cervical region from dorsal C7 and C8 dermatomes and in distal legs. RT-QuIC assessed AS in these 6 skin sites and the CSF. RESULTS: We recruited 91 patients with IRBD and 41 controls. In the skin, sensitivity to detect AS was 76.9% (95% CI 66.9-85.1), specificity 97.6% (95% CI 87.1-99.9) positive predictive value 98.6% (95% CI 91.0-99.8), negative predictive value 65.6% (95% CI 56.6-73.6), and accuracy 83.3% (95% CI 75.9-89.3). In the CSF, the sensitivity was 75.0% (95% CI 64.6-83.6), the specificity was 97.5% (95% CI 86.8-99.9), the positive predictive value was 98.5% (95% CI 90.5-99.8), the negative predictive value was 63.9% (95% CI 55.2-71.9), and the accuracy was 82.0% (95% CI 74.3-88.3). Results in the skin and CSF samples showed 99.2% agreement. Compared with negative patients, RT-QuIC AS-positive patients had a higher likelihood ratio of prodromal Parkinson disease (p < 0.001) and showed more frequently hyposmia (p < 0.001), dopamine transporter imaging single-photon emission CT deficit (p = 0.002), and orthostatic hypotension (p = 0.014). No severe or moderate adverse effects were reported. There was no difference between the percentage of participants reporting mild adverse events secondary to skin biopsy or lumbar puncture (9.1% vs 17.2%; p = 0.053). One hundred and ten (83%) and 104 (80%) participants, respectively, stated they would accept to undergo skin biopsy and lumbar puncture again for research purposes. DISCUSSION: Our study in IRBD shows that (1) RT-QuIC detects AS in the skin and CSF with similar high sensitivity, specificity, and agreement, (2) AS RT-QuIC positivity is associated with supportive features and biomarkers of synucleinopathy, and (3) skin punch biopsy and lumbar puncture have comparable mild adverse effects, tolerance, and acceptance. RT-QuIC in the skin or CSF might represent a patient selection strategy for future neuroprotective trials targeting AS in IRBD. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that RT-QuIC-detected AS in the skin and CSF distinguishes patients with IRBD from controls.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , alfa-Sinucleína , Sinucleinopatias/diagnóstico , Transtorno do Comportamento do Sono REM/diagnóstico , Estudos Transversais
7.
J Mater Chem C Mater ; 10(45): 17048-17052, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36561542

RESUMO

We report two Ni12 multicubane topologies enclosed in the polyanions [Ni12(OH)9(WO4)3(PO4)(B-α-PW9O34)3]21-{Ni12W30} and [Ni12(OH)9(HPO4)3(PO4)(B-α-PW9O34)(A-α-PW9O34)2]21-{Ni12W27} that magnetically behave as Ni12 units clearly distinguishing them from typical Ni4 cubanes as shown by magnetic studies together with high field and frequency electron paramagnetic resonance (HFEPR). Beyond the unprecedented static properties, {Ni12W30} shows the unusual coexistence of slow relaxation of the magnetization and a diamagnetic ground state (S = 0), providing the unique opportunity of studying the essentially elusive magnetic relaxation behavior in excited states. The cubane-topology dependent activity of {Ni12W30} and {Ni12W27} as homogeneous HER photocatalysts unveils the structural key features significant for the design of photocatalysts with efficient charge utilization exemplified by high quantum yields (QY) of 10.42% and 8.36% for {Ni12W30} and {Ni12W27}, respectively.

8.
Dalton Trans ; 51(32): 12258-12270, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895288

RESUMO

Five cobalt(II) complexes of formula [CoCl2(Ln)2] [1 with L1 = 1-benzyl-2-phenyl-1H-benzimidazole, 2 with L2 = 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole, 3 with L3 = 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole, 4 with L4 = 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole and 5 with L5 = 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole] have been synthesised, spectroscopically characterised and cryomagnetically investigated. The crystal structures of 1, 3, 4 and 5 have been determined by X-ray diffraction on single crystals. Each cobalt(II) ion is four-coordinate in a distorted tetrahedral environment built by two chloride anions and two benzimidazole ligands. The neutral molecules are well separated from each other, shortest intermolecular cobalt⋯cobalt distances being greater than 9.0 Å. Static (dc) magnetic susceptibility measurements in the temperature range 2.0-300 K of 1-5 reveal the occurrence of a Curie law behaviour of magnetically non-interacting spin quadruplets in the high-temperature domain with a downturn at low temperatures due to magnetic anisotropy. The values of the D and E/D parameters for these compounds vary in the ranges -8.75 to +8.96 cm-1 and 0.00140 to 0.23, respectively. Dynamic (ac) magnetic susceptibility measurements of 1-5 show slow magnetic relaxation in the lack (1) or under the presence (1-5) of applied dc magnetic fields, a feature which is typical of single-molecule magnet behaviour (SMM). The analysis of the ac data shows that a thermally activated Orbach relaxation mechanism dominates this behaviour. Complexes 1-5 also act as efficient and highly selective eco-friendly catalysts in the coupling reaction between CO2 and epoxides to produce cyclic carbonates under solvent-free conditions. Under optimized reaction conditions, different epoxides were converted to the respective cyclic carbonate, with excellent conversions, using catalyst 4.

9.
Dalton Trans ; 51(23): 8986-8993, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35536562

RESUMO

A new family of magnetically mononuclear cobalt(II) complexes with formula [{NiII(L)CoII(H2O)2(MeOH)}{NiII(L)}2](ClO4)2 where H2L1 = bis(N,N'-bis(3-methoxysalicylidene)ethylene-1,2-diamine) (1), H2L2 = bis(N,N'-bis(3-methoxysalicylidene)propane-1,2-diamine) (2) and [{CuII(L4)}2CoII](ClO4)2 (3) where H2L4 = bis(N,N'-bis(3-ethoxysalicylidene)cyclohexane-1,2-diamine) have been obtained employing non chiral or enantiomerically pure Schiff bases. The structural studies have been carried out by single crystal X-ray and powder diffraction. Dynamic magnetic studies indicate that some members of this family present field induced slow relaxation of the magnetization and its response has been compared with the magnetically diluted [Zn0.9Co0.1] complex 1D. Ultra-low frequency Raman spectroscopy has been used to relate the slow relaxation with lattice vibrations.

10.
Inorg Chem ; 61(15): 5696-5700, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35385259

RESUMO

The cobalt(II)-mediated self-assembly of the potentially tris(chelating) N,N'-2,2'-(4,4'-bithiazole)bis(oxamate) (dabtzox) ligand gives a new metal-organic supramolecular nanomagnet of formula K6Co3(dabtzox)3·8H2O·MeOH (1) featuring a unique linear triple-stranded trinuclear structure of the helicate type.

11.
Neurology ; 98(23): e2387-e2400, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35437263

RESUMO

BACKGROUND AND OBJECTIVES: Recent studies fueled doubts as to whether all currently defined central disorders of hypersomnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New reliable biomarkers are needed, and the question arises of whether current diagnostic criteria of hypersomnolence disorders should be reassessed. The main aim of this data-driven observational study was to see whether data-driven algorithms would segregate narcolepsy type 1 and identify more reliable subgrouping of individuals without cataplexy with new clinical biomarkers. METHODS: We used agglomerative hierarchical clustering, an unsupervised machine learning algorithm, to identify distinct hypersomnolence clusters in the large-scale European Narcolepsy Network database. We included 97 variables, covering all aspects of central hypersomnolence disorders such as symptoms, demographics, objective and subjective sleep measures, and laboratory biomarkers. We specifically focused on subgrouping of patients without cataplexy. The number of clusters was chosen to be the minimal number for which patients without cataplexy were put in distinct groups. RESULTS: We included 1,078 unmedicated adolescents and adults. Seven clusters were identified, of which 4 clusters included predominantly individuals with cataplexy. The 2 most distinct clusters consisted of 158 and 157 patients, were dominated by those without cataplexy, and among other variables, significantly differed in presence of sleep drunkenness, subjective difficulty awakening, and weekend-week sleep length difference. Patients formally diagnosed as having narcolepsy type 2 and idiopathic hypersomnia were evenly mixed in these 2 clusters. DISCUSSION: Using a data-driven approach in the largest study on central disorders of hypersomnolence to date, our study identified distinct patient subgroups within the central disorders of hypersomnolence population. Our results contest inclusion of sleep-onset REM periods in diagnostic criteria for people without cataplexy and provide promising new variables for reliable diagnostic categories that better resemble different patient phenotypes. Cluster-guided classification will result in a more solid hypersomnolence classification system that is less vulnerable to instability of single features.


Assuntos
Cataplexia , Distúrbios do Sono por Sonolência Excessiva , Hipersonia Idiopática , Narcolepsia , Adolescente , Cataplexia/diagnóstico , Análise por Conglomerados , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Distúrbios do Sono por Sonolência Excessiva/epidemiologia , Humanos , Hipersonia Idiopática/diagnóstico , Narcolepsia/diagnóstico , Narcolepsia/tratamento farmacológico
12.
Dalton Trans ; 51(12): 4760-4771, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35244632

RESUMO

A unique π-conjugated benzothiadiazole-ortho-vanillin ligand (HL), characterized by single crystal X-ray diffraction and DFT calculations, has been prepared by condensation between 4-amino-benzothiadiazole (BTD) and ortho-vanillin. Its reaction with cobalt(II) acetate afforded the complex of formula [CoL2]·CH2Cl2 (1), for which the coordination environment of the cobalt centre is a distorted octahedron and the ligand acts as a monoanionic tridentate NNO chelate in its phenolate form. Intermolecular π-π stacking interactions between the π-conjugated BTD units provide an antiferromagnetic coupling pathway, as indicated by the analysis of the dc magnetic measurements of a crystalline sample of the complex and supported by DFT type calculations. The static magnetic behaviour of 1 is analysed according to spin-orbit coupling and zero-field splitting models. Remarkably, the complex exhibits slow relaxation of the magnetization under dc applied magnetic fields being thus a new example of field-induced mononuclear single-molecule magnet (SMM).

13.
Dalton Trans ; 50(44): 16353-16363, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34734603

RESUMO

We describe herein the first examples of six-coordinate CoII single-ion magnets (SIMs) based on the ß-diimine Mebik ligand [Mebik = bis(1-methylimidazol-2-yl)ketone]: two mononuclear [CoII(Rbik)2L2] complexes and one mixed-valence {CoIII2CoII}n chain of formulas [CoII(Mebik)(H2O)(dmso)(µ-NC)2CoIII2(µ-2,5-dpp)(CN)6]n·1.4nH2O (3) [L = NCS (1), NCSe (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine (3)]. Two bidentate Mebik molecules plus two monodentate N-coordinated pseudohalide groups in cis positions build somewhat distorted octahedral surroundings around the high-spin cobalt(II) ions in 1 and 2. The diamagnetic [CoIII2(µ-2,5-dpp)(CN)8]2- metalloligand coordinates the paramagnetic [CoII(Mebik)(H2O)(dmso)]2+ complex cations in a bis-monodentate fashion to afford neutral zigzag heterobimetallic chains in 3. Ab initio calculations, and cryomagnetic dc (2.0-300 K) and ac (2.0-12 K) measurements as well as EPR spectroscopy for 1-3 show the existence of magnetically isolated high-spin cobalt(II) ions with D values of 59.84-89.90 (1), 66.32-93.90 (2) and 70.40-127.20 cm-1 (3) and field-induced slow relaxation of the magnetization, being thus new examples of SIMs with transversal magnetic anisotropy. The analysis of their relaxation dynamics reveals that the relaxation of the magnetization occurs by the Raman (with values of the n parameter covering the range 6.0-6.8) and direct spin-phonon processes.

14.
Dalton Trans ; 50(41): 14640-14652, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34581372

RESUMO

A new series of cyanido-bridged {FeIIILnIII}2 neutral molecular squares of general formula [Fe{HB(pz)3}(CN)(µ-CN)2Ln(NO3)2(pyim)(Ph3PO)]2·2CH3CN [Ln = Ce (1), Pr (2), Nd (3), Gd (4), Tb (5), Dy (6) and Er (7); {HB(pz)3}- = hydrotris(pyrazolyl)borate, pyim = 2-(1H-imidazol-2-yl)pyridine and Ph3PO = triphenylphosphine oxide] were obtained by reacting the low-spin [Fe{HB(pz)3}(CN)3]- species with the preformed [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ complex anions (generated in situ by mixing the nitrate salt of each Ln(III) ion with pyim and Ph3PO molecules). Single-crystal X-ray diffraction studies show that 1-7 are isostructural compounds that crystallize in the triclinic P1̄ space group. Their crystal structures consist of centrosymmetric cyanido-bridged {FeIIILnIII}2 molecular squares where two [Fe{HB(pz)3}(CN)3]- units adopt bis-monodentate coordination modes towards two [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ moieties. The cis-oriented convergent sites from both low-spin FeIII and LnIII fragments form a quasi square-shaped molecule in which the 3d and 4f ions alternatively occupy the corners of the square. Both FeIII ions show a distorted octahedral surrounding (C3v symmetry), whereas the LnIII ions exhibit a distorted muffin-like geometry (Cs symmetry) in 1-7. The intramolecular FeIII⋯LnIII distances across the two cyanido-bridges range from ca. 5.48/5.46 up to ca. 5.58/5.61 Å. The molecular squares in 1-7 are interlinked through hydrogen bonds, weak π⋯π stacking and very weak C-H⋯π type interactions into three-dimensional supramolecular networks. The analysis of the solid-state direct-current (dc) magnetic susceptibility data of 1-7 in the temperature range 1.9-300 K reveals the occurrence of weak intra- and intermolecular antiferromagnetic interactions. The small intramolecular antiferromagnetic couplings in 4 compare well with those previously reported for parent systems. Although the coexistence of the spin-orbit coupling (SOC) of the low-spin iron(III) and lanthanide(III) ions in the remaining compounds together with the ligand field effects mask the visualization and make difficult the evaluation of the possible magnetic interactions in them, we were able to do it through a SOC model applied on exact or effective Hamiltonians. Frequency-dependent alternating current magnetic susceptibility signals in the temperature range 2.0-9.0 K under zero and non-zero static fields were observed for 5-7 which indicate slow magnetic relaxation (SMM) behavior. The usual absence of χ''M maxima moved us to estimate their energy barriers through ln(χ''M/ χ'M) vs. 1/T plots, obtaining values from 25 to 40 cm-1.

15.
Dalton Trans ; 50(36): 12430-12434, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545875

RESUMO

We report the unique heterobimetallic dodecanuclear oxamate-based {CoII6CuII6} nanowheel obtained using an environmentally friendly synthetic protocol. The effective Hamiltonian methodology employed herein allows the rationalisation of magnetic isotropic or anisotropic metal clusters, being a significant advance for future studies of exciting properties only observed at low and ultralow temperatures.

16.
Inorg Chem ; 60(17): 12719-12723, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34424680

RESUMO

The coexistence of field-induced blockage of the magnetization and significant magnetocaloric effects in the low-temperature region occurs in a mononuclear holmium(III) diethylenetriamine-N,N,N',N″,N″-pentaacetate complex, whose gadolinium(III) analogue is a commercial MRI contrast agent. Both properties make it a suitable candidate for cryogenic magnetic refrigeration, thus enlarging the variety of applications of this simple class of multifunctional molecular nanomagnets.


Assuntos
Complexos de Coordenação/química , Hólmio/química , Imãs/química , Ácido Pentético/química , Refrigeração/métodos , Temperatura Baixa , Fenômenos Magnéticos
17.
Dalton Trans ; 50(11): 3801-3805, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33721007

RESUMO

The coexistence of field-induced slow magnetic relaxation and moderately large magnetocaloric efficiency in the supra-Kelvin temperature region occurs in the 2D compound [Gd(ox)3(H2O)6]n·4nH2O (1), a feature that can be exploited in the proof-of-concept design of a new class of slow-relaxing magnetic materials for cryogenic magnetic refrigeration.

18.
Chem Commun (Camb) ; 56(81): 12242-12245, 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-32926022

RESUMO

Thermal-assisted spin crossover and field-induced slow magnetic relaxation coexist in the solid state for the mononuclear cobalt(ii) complex with the non-innocent 2,6-bis(N-4-methoxyphenylformimidoyl)pyridine ligand. One-electron oxidation of the paramagnetic low-spin CoII ion (SCo = 1/2) to the diamagnetic low-spin CoIII ion (SCo = 0) leads to the electroswitching of the slow magnetic relaxation in acetonitrile solution.

19.
Dalton Trans ; 49(27): 9516-9528, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32608402

RESUMO

Two novel mixed valence CoII-CoIII complexes, namely [CoIICoIII(L1)(ab)(mb)2(H2O)]·dmf (1) and [CoCoII(L2)4(H2O)4]·2H2O (2) [H2L1 = (E)-2-((1-hydroxybutan-2-ylimino)methyl)-6-methoxyphenol, ab = 2-amino-butan-1-ol anion, mb = p-methyl benzoate, H2L2 = 3-((2-hydroxy-3-methoxy-benzylidene)-amino)-propionic acid, and dmf = N,N-dimethyl-formamide], were synthesized and characterized by single crystal X-ray diffraction and magnetic studies at low temperature. The structure determination reveals that both complexes belong to the monoclinic system with P21/c (1) and I2/a (2) space groups. Complex 1 is a dinuclear CoIIICoII compound with distorted octahedral cobalt centers showing different coordination environments. In 2, a bent trinuclear CoCoII complex, the coordination environments around the two terminal CoIII sites are alike, whereas they are different in the central CoII ion. Alternating current/direct current (ac/dc) magnetic studies revealed that both complexes show field-induced slow magnetic relaxation. The dc magnetic susceptibility and magnetization data were analyzed with the following Hamiltonianwhere D and E are the axial and rhombic zero-field splitting (zfs) parameters, respectively, and a good agreement between experimental and simulated results was found using the parameters g⊥ = 2.585, g∥ = 2.437, D = +98.1 cm-1, E/D = 0.008 and F = 8.2× 10-5 for 1 and g⊥ = 2.580, g∥ = 2.580, D = +55.4 cm-1, and E/D = 0.000 for 2.

20.
Chemistry ; 26(62): 14242-14251, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32649799

RESUMO

A mononuclear iron(III) porphyrin compound exhibiting unexpectedly slow magnetic relaxation, which is a characteristic of single-ion magnet behaviour, is reported. This behaviour originates from the close proximity (≈550 cm-1 ) of the intermediate-spin S=3/2 excited states to the high-spin S=5/2 ground state. More quantitatively, although the ground state is mostly S=5/2, a spin-admixture model evidences a sizable contribution (≈15 %) of S=3/2 to the ground state, which as a consequence experiences large and positive axial anisotropy (D=+19.2 cm-1 ). Frequency-domain EPR spectroscopy allowed the mS = |±1/2⟩→|±3/2⟩ transitions to be directly accessed, and thus the very large zero-field splitting in this 3d5 system to be unambiguously measured. Other experimental results including magnetisation, Mössbauer, and field-domain EPR studies are consistent with this model, which is also supported by theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...