Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 435(4): 464-73, 2001 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-11406826

RESUMO

Mechanisms controlling dendritic arbor formation affect the establishment of neuronal circuits. Candidate plasticity gene 15 (CPG15) is a glycosylphosphatidyl inositol (GPI)-linked activity-induced protein that has been shown to function as an intercellular signaling molecule that can promote the morphological and physiological development of the Xenopus retinotectal system. A thorough understanding of CPG15 function requires knowledge of the spatiotemporal expression of the endogenous protein. We therefore cloned Xenopus cpg15 and used RNA in situ hybridization and immunohistochemistry to determine the pattern of CPG15 expression. cpg15 mRNA and CPG15 protein are first detectable in the developing spinal cord and become widespread as development proceeds. CPG15 is expressed in sensory regions of the brain, including the visual, auditory, and olfactory systems. Within the retina, CPG15 is only expressed in retinal ganglion cells. CPG15 protein is concentrated in axon tracts, including retinal axons. These data support a model in which CPG15 expressed in retinal ganglion cells is trafficked to retinal axons, where it modulates postsynaptic dendritic arbor elaboration, and synaptic maturation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Northern Blotting , Clonagem Molecular , Sequência Conservada , DNA/biossíntese , DNA/genética , Dendritos/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Rim/metabolismo , Larva/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/anatomia & histologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sinapses/fisiologia , Xenopus
2.
Nat Neurosci ; 3(10): 1004-11, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11017173

RESUMO

The formation of CNS circuits is characterized by the coordinated development of neuronal structure and synaptic function. The activity-regulated candidate plasticity gene 15 (cpg15) encodes a glycosylphosphatidylinositol (GPI)-linked protein whose in vivo expression increases the dendritic arbor growth rate of Xenopus optic tectal cells. We now demonstrate that tectal cell expression of CPG15 significantly increases the elaboration of presynaptic retinal axons by decreasing rates of branch retractions. Whole-cell recordings from optic tectal neurons indicate that CPG15 expression promotes retinotectal synapse maturation by recruiting functional AMPA receptors to synapses. Expression of truncated CPG15, lacking its GPI anchor, does not promote axon arbor growth and blocks synaptic maturation. These results suggest that CPG15 coordinately increases the growth of pre- and postsynaptic structures and the number and strength of their synaptic contacts.


Assuntos
Vias Aferentes/crescimento & desenvolvimento , Axônios/metabolismo , Cones de Crescimento/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso , Retina/crescimento & desenvolvimento , Colículos Superiores/crescimento & desenvolvimento , Sinapses/metabolismo , Vias Aferentes/metabolismo , Vias Aferentes/ultraestrutura , Fatores Etários , Animais , Axônios/ultraestrutura , Comunicação Celular/fisiologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter/fisiologia , Cones de Crescimento/ultraestrutura , Larva , Proteínas de Membrana/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Retina/metabolismo , Retina/ultraestrutura , Colículos Superiores/metabolismo , Colículos Superiores/ultraestrutura , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Xenopus laevis , beta-Galactosidase/genética
3.
Curr Biol ; 10(17): R620-3, 2000 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-10996085

RESUMO

Neuroligin and neurexin form an intercellular adhesion complex sufficient to trigger formation of functional presynaptic elements in vitro. This single molecular interaction appears to initiate clustering of synaptic vesicles, assembly of vesicle-release machinery and morphological changes at the presynaptic membrane.


Assuntos
Sinapses/fisiologia , Animais , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Ligação Proteica
4.
Hippocampus ; 10(3): 269-73, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10902896

RESUMO

After seizures caused by kindling or kainic acid (KA), hippocampal granule-cell axons, the mossy fibers, sprout into the supragranular layer of the rat. The mechanisms underlying this phenomenon remain elusive, but excitotoxic loss of hilar cells, which project to this supragranular layer, is suspected to be a critical determinant. Consistent with this hypothesis, we previously reported that while rats show mossy fiber sprouting after kainate, ICR mice do not. This may be associated with the observation that ICR mice, unlike rats, do not appear to show hilar cell death after KA (McNamara et al., Mol Brain Res 1996;40:177-187). Other strains of mice, however, such as 129/SvEMS, do show hilar cell death after KA (Schauwecker and Steward, Proc Natl Acad Sci USA 1997;94:4103-4108). We examined the possibility that the 129/SvEMS mouse strain would show granule-cell sprouting, in contrast to ICR mice. After administration of KA, mossy fiber sprouting was indeed observed in strain 129/SvEMS, but only in animals displaying evident hilar cell death. In contrast, neither hilar cell death nor mossy fiber sprouting was observed in ICR mice, confirming previous results. Both mouse strains demonstrated comparable behavioral seizures. These results strengthen the view that hilar cell death, together with epileptogenesis, triggers reactive synaptogenesis and mossy fiber sprouting.


Assuntos
Axônios/fisiologia , Ácido Caínico/farmacologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Excitação Neurológica , Camundongos , Camundongos Endogâmicos ICR , Camundongos Endogâmicos , Fibras Musgosas Hipocampais/fisiologia , Ratos , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Especificidade da Espécie
5.
Proc Natl Acad Sci U S A ; 97(13): 7657-62, 2000 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-10861025

RESUMO

Ramón y Cajal proposed 100 years ago that memory formation requires the growth of nerve cell processes. One-half century later, Hebb suggested that growth of presynaptic axons and postsynaptic dendrites consequent to coactivity in these synaptic elements was essential for such information storage. In the past 25 years, candidate growth genes have been implicated in learning processes, but it has not been demonstrated that they in fact enhance them. Here, we show that genetic overexpression of the growth-associated protein GAP-43, the axonal protein kinase C substrate, dramatically enhanced learning and long-term potentiation in transgenic mice. If the overexpressed GAP-43 was mutated by a Ser --> Ala substitution to preclude its phosphorylation by protein kinase C, then no learning enhancement was found. These findings provide evidence that a growth-related gene regulates learning and memory and suggest an unheralded target, the GAP-43 phosphorylation site, for enhancing cognitive ability.


Assuntos
Comportamento Animal/fisiologia , Proteína GAP-43/fisiologia , Animais , Expressão Gênica/fisiologia , Aprendizagem/fisiologia , Camundongos , Camundongos Transgênicos
6.
J Neurobiol ; 41(2): 208-20, 1999 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-10512978

RESUMO

The intricate circuitry of the nervous system has been shown to be refined by activity-dependent processes often involving the glutamate N-methyl-D-aspartate (NMDA) receptor. NMDA receptor activity has been directly associated with axonal growth during development and in adult models of synaptic plasticity. The axonal growth-associated protein GAP-43 has been involved in the same processes as the NMDA receptor, but a direct link between the two has never been demonstrated in vivo. It is attractive to think that the NMDA receptor may regulate axonal growth through GAP-43. We tested this idea in outgrowing axons of hippocampal granule cells, the mossy fibers. Granule cells normally only express GAP-43 in an organized outside-in manner during a restricted period in postnatal development paralleling the pattern of axonal extension. Here, we show that during postnatal development in a transgenic mouse bearing a GAP-43 promoter/lacZ reporter construct, granule cells also display an outside-in pattern of promoter activation as indexed by transgene expression (PATE). In fact, PATE precedes axonal outgrowth with temporospatial fidelity. Since PATE deactivates on growth termination, the promoter may function as a switch for an intrinsic program of regulated axonal growth. The NMDA receptor antagonist MK-801 administered within a restricted time frame (4-8 days) results in a decrease in the extent and intensity of mossy fiber staining. While levels of GAP-43 mRNA are significantly reduced in granule cells, GAP-43 PATE is not. The level of GAP-43 expression and axonal growth during development appears to be dually controlled by a transcriptional program that is activity-independent and by a posttranscriptional mechanism that is activity-dependent and NMDA mediated.


Assuntos
Giro Denteado/embriologia , Proteína GAP-43/genética , Fibras Musgosas Hipocampais/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Giro Denteado/citologia , Giro Denteado/crescimento & desenvolvimento , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Óperon Lac , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musgosas Hipocampais/química , Fibras Musgosas Hipocampais/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/análise , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transgenes/fisiologia
7.
J Neurosci Res ; 46(4): 445-55, 1996 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8950704

RESUMO

Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that appears to play a central role in integrin-mediated signal transduction in non-neuronal cells, linking the extracellular matrix to the actin-based cytoskeleton at focal adhesion contacts. Biochemical analysis has revealed the presence of FAK immunoreactivity in cells of neuronal lineage (Zhang et al., 1994) and in the CNS (Burgaya et al. 1995; Grant et al., 1995). In the current work, we have examined the immunodistribution of FAK in nerve cell cultures and tissue sections from the rat CNS. Cultures of B103 CNS neuroblastoma cells and primary cultures of hippocampal neurons both showed abundant FAK immunoreactivity in nerve cell bodies. Immunoreactivity also extended into neurites and growth cones. The most striking feature of FAK distribution was the presence of short, punctate clusters of high FAK concentration. These FAK clusters were maintained in triton-extracted cell ghosts, indicating association with the cytoskeleton. Double-label confocal imaging showed that clusters of FAK coincided with clusters of vinculin, another actin-associated signal transduction molecule implicated in control of growth cone motility. Data from hippocampal sections verified the presence of FAK in adult neurons where it was enriched in somato-dendritic domains and showed a non-uniform distribution. Quantitative FAK immunoprecipitation to compare adult with embryonic brain showed a 7-fold developmental down-regulation of FAK and a 21-fold down-regulation of FAK TyrP. The data suggest that neuronal FAK may participate in signal transduction complexes relevant to neuronal morphogenesis and plasticity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Tirosina Quinases/metabolismo , Vinculina/metabolismo , Fatores Etários , Animais , Transporte Biológico , Moléculas de Adesão Celular/genética , Citoesqueleto/metabolismo , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/citologia , Hipocampo/embriologia , Substâncias Macromoleculares , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/ultraestrutura , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas
8.
J Comp Neurol ; 366(2): 303-19, 1996 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-8698889

RESUMO

Hippocampal granule cells do not normally express the axonal growth- and plasticity-associated protein F1/GAP-43 in the adult rat. Using three different methods that lead to hypersynchronous activity in limbic circuits, expression of F1/GAP-43 mRNA can be induced in granule cells which is followed by sprouting in mossy fibers, the axons of granule cells. F1/GAP-43 mRNA expression in granule cells was induced in the temporal, but not septal, hippocampus beginning at 12 hours after kainic acid (KA) subcutaneous injection (10 mg/kg). Beginning 2 days after KA treatment, mossy fiber sprouts restricted to the temporal hippocampus were observed in the supragranular layer. In the same animal we also observed that levels of protein F1/GAP-43 immunoreactivity in this layer apparently increased at this same 2 day time point and same ventral hippocampal location. F1/GAP-43 protein levels and mossy fiber sprouting showed an increase up to 10 days after KA treatment. Sprouting was at a maximum at 40 days, the longest time point studied. These events parallel axonal regeneration with one critical difference: granule cell axons are not damaged by kainate. The rapid onset of axonal growth in the adult is striking and occurs earlier than reported previously (2 days vs. 12 days). Such growth closely associated with elevated levels of protein F1/GAP-43 may occur as a result of a) reactive synaptogenesis caused by the availability of post-synaptic surface on granule cell dendrites at the supragranular layer, b) Hebbian co-activation of the post-synaptic granule cells and their presynaptic afferents, and c) loss of target-derived inhibitory growth factor.


Assuntos
Axônios/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/crescimento & desenvolvimento , Ácido Caínico/farmacologia , Glicoproteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Animais , Anticorpos Monoclonais , Corantes , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Proteína GAP-43 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Masculino , Plasticidade Neuronal/fisiologia , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA