Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581937

RESUMO

Colorectal cancer (CRC) at advanced stages is rarely curable, underscoring the importance of exploring the mechanism of CRC progression and invasion. NOD-like receptor family member NLRP12 was shown to suppress colorectal tumorigenesis, but the precise mechanism was unknown. Here, we demonstrate that invasive adenocarcinoma development in Nlrp12-deficient mice is associated with elevated expression of genes involved in proliferation, matrix degradation, and epithelial-mesenchymal transition. Signaling pathway analysis revealed higher activation of the Wnt/ß-catenin pathway, but not NF-κB and MAPK pathways, in the Nlrp12-deficient tumors. Using Nlrp12-conditional knockout mice, we revealed that NLRP12 downregulates ß-catenin activation in intestinal epithelial cells, thereby suppressing colorectal tumorigenesis. Consistent with this, Nlrp12-deficient intestinal organoids and CRC cells showed increased proliferation, accompanied by higher activation of ß-catenin in vitro. With proteomic studies, we identified STK38 as an interacting partner of NLRP12 involved in the inhibition of phosphorylation of GSK3ß, leading to the degradation of ß-catenin. Consistently, the expression of NLRP12 was significantly reduced, while p-GSK3ß and ß-catenin were upregulated in mouse and human colorectal tumor tissues. In summary, NLRP12 is a potent negative regulator of the Wnt/ß-catenin pathway, and the NLRP12/STK38/GSK3ß signaling axis could be a promising therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Proteômica , Via de Sinalização Wnt , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
2.
J Pathol Inform ; 13: 1, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136669

RESUMO

Bioinformatics analysis is a key element in the development of in-house next-generation sequencing assays for tumor genetic profiling that can include both tumor DNA and RNA with comparisons to matched-normal DNA in select cases. Bioinformatics analysis encompasses a computationally heavy component that requires a high-performance computing component and an assay-dependent quality assessment, aggregation, and data cleaning component. Although there are free, open-source solutions and fee-for-use commercial services for the computationally heavy component, these solutions and services can lack the options commonly utilized in increasingly complex genomic assays. Additionally, the cost to purchase commercial solutions or implement and maintain open-source solutions can be out of reach for many small clinical laboratories. Here, we present Software for Clinical Health in Oncology for Omics Laboratories (SCHOOL), a collection of genomics analysis workflows that (i) can be easily installed on any platform; (ii) run on the cloud with a user-friendly interface; and (iii) include the detection of single nucleotide variants, insertions/deletions, copy number variants (CNVs), and translocations from RNA and DNA sequencing. These workflows contain elements for customization based on target panel and assay design, including somatic mutational analysis with a matched-normal, microsatellite stability analysis, and CNV analysis with a single nucleotide polymorphism backbone. All of the features of SCHOOL have been designed to run on any computer system, where software dependencies have been containerized. SCHOOL has been built into apps with workflows that can be run on a cloud platform such as DNANexus using their point-and-click graphical interface, which could be automated for high-throughput laboratories.

3.
Cell Rep ; 37(8): 110055, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818533

RESUMO

Renal cell carcinoma (RCC) encompasses a heterogenous group of tumors, but representative preclinical models are lacking. We previously showed that patient-derived tumorgraft (TG) models recapitulate the biology and treatment responsiveness. Through systematic orthotopic implantation of tumor samples from 926 ethnically diverse individuals into non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice, we generate a resource comprising 172 independently derived, stably engrafted TG lines from 148 individuals. TG lines are characterized histologically and genomically (whole-exome [n = 97] and RNA [n = 102] sequencing). The platform features a variety of histological and oncogenotypes, including TCGA clades further corroborated through orthogonal metabolomic analyses. We illustrate how it enables a deeper understanding of RCC biology; enables the development of tissue- and imaging-based molecular probes; and supports advances in drug development.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Carcinoma de Células Renais/fisiopatologia , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Medicina de Precisão/métodos
4.
BMC Genomics ; 22(1): 720, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34610790

RESUMO

BACKGROUND: Varroa destructor mites, and the numerous viruses they vector to their honey bee hosts, are among the most serious threats to honey bee populations, causing mortality and morbidity to both the individual honey bee and colony, the negative effects of which convey to the pollination services provided by honey bees worldwide. Here we use a combination of targeted assays and deep RNA sequencing to determine host and microbial changes in resistant and susceptible honey bee lineages. We focus on three study sets. The first involves field sampling of sympatric western bees, some derived from resistant stock and some from stock susceptible to mites. The second experiment contrasts three colonies more deeply, two from susceptible stock from the southeastern U.S. and one from mite-resistant bee stock from Eastern Texas. Finally, to decouple the effects of mites from those of the viruses they vector, we experimentally expose honey bees to DWV in the laboratory, measuring viral growth and host responses. RESULTS: We find strong differences between resistant and susceptible bees in terms of both viral loads and bee gene expression. Interestingly, lineages of bees with naturally low levels of the mite-vectored Deformed wing virus, also carried lower levels of viruses not vectored by mites. By mapping gene expression results against current ontologies and other studies, we describe the impacts of mite parasitism, as well as viruses on bee health against two genetic backgrounds. We identify numerous genes and processes seen in other studies of stress and disease in honey bee colonies, alongside novel genes and new patterns of expression. CONCLUSIONS: We provide evidence that honey bees surviving in the face of parasitic mites do so through their abilities to resist the presence of devastating viruses vectored by these mites. In all cases, the most divergence between stocks was seen when bees were exposed to live mites or viruses, suggesting that gene activation, rather than constitutive expression, is key for these interactions. By revealing responses to viral infection and mite parasitism in different lineages, our data identify candidate proteins for the evolution of mite tolerance and virus resistance.


Assuntos
Vírus de RNA , Varroidae , Viroses , Animais , Abelhas , Vírus de RNA/genética , Carga Viral
5.
Cell Syst ; 12(7): 733-747.e6, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34077708

RESUMO

Deep learning has emerged as the technique of choice for identifying hidden patterns in cell imaging data but is often criticized as "black box." Here, we employ a generative neural network in combination with supervised machine learning to classify patient-derived melanoma xenografts as "efficient" or "inefficient" metastatic, validate predictions regarding melanoma cell lines with unknown metastatic efficiency in mouse xenografts, and use the network to generate in silico cell images that amplify the critical predictive cell properties. These exaggerated images unveiled pseudopodial extensions and increased light scattering as hallmark properties of metastatic cells. We validated this interpretation using live cells spontaneously transitioning between states indicative of low and high metastatic efficiency. This study illustrates how the application of artificial intelligence can support the identification of cellular properties that are predictive of complex phenotypes and integrated cell functions but are too subtle to be identified in the raw imagery by a human expert. A record of this paper's transparent peer review process is included in the supplemental information. VIDEO ABSTRACT.


Assuntos
Aprendizado Profundo , Melanoma , Animais , Inteligência Artificial , Humanos , Camundongos , Redes Neurais de Computação
6.
Am J Surg Pathol ; 45(11): 1550-1560, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33999553

RESUMO

We report a novel NIPBL-NACC1 gene fusion in a rare primary hepatic neoplasm previously described as the "cholangioblastic variant of intrahepatic cholangiocarcinoma." The 2 index cases were identified within our consultation files as morphologically distinctive primary hepatic neoplasms in a 24-year-old female and a 54-year-old male. The neoplasms each demonstrated varied architecture, including trabecular, organoid, microcystic/follicular, and infiltrative glandular patterns, and biphasic cytology with large, polygonal eosinophilic cells and smaller basophilic cells. The neoplasms had a distinctive immunoprofile characterized by diffuse labeling for inhibin, and patchy labeling for neuroendocrine markers (chromogranin and synaptophysin) and biliary marker cytokeratin 19. RNA sequencing of both cases demonstrated an identical fusion of NIBPL exon 8 to NACC1 exon 2, which was further confirmed by break-apart fluorescence in situ hybridization assay for each gene. Review of a tissue microarray including 123 cases originally diagnosed as well-differentiated neuroendocrine neoplasm at one of our hospitals resulted in identification of a third case with similar morphology and immunophenotype in a 52-year-old male, and break-apart fluorescence in situ hybridization probes confirmed rearrangement of both NIPBL and NACC1. Review of The Cancer Genome Atlas (TCGA) sequencing data and digital images from 36 intrahepatic cholangiocarcinomas (www.cbioportal.org) revealed one additional case with the same gene fusion and the same characteristic solid, trabecular, and follicular/microcystic architectures and biphasic cytology as seen in our genetically confirmed cases. The NIPBL-NACC1 fusion represents the third type of gene fusion identified in intrahepatic cholangiocarcinoma, and correlates with a distinctive morphology described herein.


Assuntos
Neoplasias dos Ductos Biliares/genética , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Colangiocarcinoma/genética , Fusão Gênica , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/cirurgia , Colangiocarcinoma/patologia , Colangiocarcinoma/cirurgia , Feminino , Predisposição Genética para Doença , Hepatectomia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Resultado do Tratamento , Adulto Jovem
7.
Genet Med ; 23(5): 900-908, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33473208

RESUMO

PURPOSE: Neurodevelopmental disabilities are common and genetically heterogeneous. We identified a homozygous variant in the gene encoding UFM1-specific peptidase 2 (UFSP2), which participates in the UFMylation pathway of protein modification. UFSP2 variants are implicated in autosomal dominant skeletal dysplasias, but not neurodevelopmental disorders. Homozygosity for the variant occurred in eight children from four South Asian families with neurodevelopmental delay and epilepsy. We describe the clinical consequences of this variant and its effect on UFMylation. METHODS: Exome sequencing was used to detect potentially pathogenic variants and identify shared regions of homozygosity. Immunoblotting assessed protein expression and post-translational modifications in patient-derived fibroblasts. RESULTS: The variant (c.344T>A; p.V115E) is rare and alters a conserved residue in UFSP2. Immunoblotting in patient-derived fibroblasts revealed reduced UFSP2 abundance and increased abundance of UFMylated targets, indicating the variant may impair de-UFMylation rather than UFMylation. Reconstituting patient-derived fibroblasts with wild-type UFSP2 reduced UFMylation marks. Analysis of UFSP2's structure indicated that variants observed in skeletal disorders localize to the catalytic domain, whereas V115 resides in an N-terminal domain possibly involved in substrate binding. CONCLUSION: Different UFSP2 variants cause markedly different diseases, with homozygosity for V115E causing a severe syndrome of neurodevelopmental disability and epilepsy.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Osteocondrodisplasias , Criança , Epilepsia/genética , Homozigoto , Humanos , Transtornos do Neurodesenvolvimento/genética , Sequenciamento do Exoma
8.
Sci Transl Med ; 12(567)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115951

RESUMO

The higher prevalence of inflammatory bowel disease (IBD) in Western countries points to Western diet as a possible IBD risk factor. High sugar, which is linked to many noncommunicable diseases, is a hallmark of the Western diet, but its role in IBD remains unknown. Here, we studied the effects of simple sugars such as glucose and fructose on colitis pathogenesis in wild-type and Il10-/- mice. Wild-type mice fed 10% glucose in drinking water or high-glucose diet developed severe colitis induced by dextran sulfate sodium. High-glucose-fed Il10-/- mice also developed a worsened colitis compared to glucose-untreated Il10-/- mice. Short-term intake of high glucose or fructose did not trigger inflammatory responses in healthy gut but markedly altered gut microbiota composition. In particular, the abundance of the mucus-degrading bacteria Akkermansia muciniphila and Bacteroides fragilis was increased. Consistently, bacteria-derived mucolytic enzymes were enriched leading to erosion of the colonic mucus layer of sugar-fed wild-type and Il10-/- mice. Sugar-induced exacerbation of colitis was not observed when mice were treated with antibiotics or maintained in a germ-free environment, suggesting that altered microbiota played a critical role in sugar-induced colitis pathogenesis. Furthermore, germ-free mice colonized with microbiota from sugar-treated mice showed increased colitis susceptibility. Together, these data suggest that intake of simple sugars predisposes to colitis and enhances its pathogenesis via modulation of gut microbiota in mice.


Assuntos
Colite , Açúcares da Dieta , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Dieta , Açúcares da Dieta/efeitos adversos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Monossacarídeos
9.
Gut ; 69(11): 1928-1938, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32111635

RESUMO

OBJECTIVE: Although perturbations in mitochondrial function and structure have been described in the intestinal epithelium of Crohn's disease and ulcerative colitis patients, the role of epithelial mitochondrial stress in the pathophysiology of inflammatory bowel diseases (IBD) is not well elucidated. Prohibitin 1 (PHB1), a major component protein of the inner mitochondrial membrane crucial for optimal respiratory chain assembly and function, is decreased during IBD. DESIGN: Male and female mice with inducible intestinal epithelial cell deletion of Phb1 (Phb1iΔIEC ) or Paneth cell-specific deletion of Phb1 (Phb1ΔPC ) and Phb1fl/fl control mice were housed up to 20 weeks to characterise the impact of PHB1 deletion on intestinal homeostasis. To suppress mitochondrial reactive oxygen species, a mitochondrial-targeted antioxidant, Mito-Tempo, was administered. To examine epithelial cell-intrinsic responses, intestinal enteroids were generated from crypts of Phb1iΔIEC or Phb1ΔPC mice. RESULTS: Phb1iΔIEC mice exhibited spontaneous ileal inflammation that was preceded by mitochondrial dysfunction in all IECs and early abnormalities in Paneth cells. Mito-Tempo ameliorated mitochondrial dysfunction, Paneth cell abnormalities and ileitis in Phb1iΔIEC ileum. Deletion of Phb1 specifically in Paneth cells (Phb1ΔPC ) was sufficient to cause ileitis. Intestinal enteroids generated from crypts of Phb1iΔIEC or Phb1ΔPC mice exhibited decreased viability and Paneth cell defects that were improved by Mito-Tempo. CONCLUSION: Our results identify Paneth cells as highly susceptible to mitochondrial dysfunction and central to the pathogenesis of ileitis, with translational implications for the subset of Crohn's disease patients exhibiting Paneth cell defects.


Assuntos
Ileíte/etiologia , Ileíte/patologia , Mitocôndrias/fisiologia , Celulas de Paneth/patologia , Proteínas Repressoras/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Compostos Organofosforados , Piperidinas , Proibitinas
10.
Arch Pathol Lab Med ; 144(9): 1118-1130, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32045276

RESUMO

CONTEXT.­: Clinical next-generation sequencing (NGS) is being rapidly adopted, but analysis and interpretation of large data sets prompt new challenges for a clinical laboratory setting. Clinical NGS results rely heavily on the bioinformatics pipeline for identifying genetic variation in complex samples. The choice of bioinformatics algorithms, genome assembly, and genetic annotation databases are important for determining genetic alterations associated with disease. The analysis methods are often tuned to the assay to maximize accuracy. Once a pipeline has been developed, it must be validated to determine accuracy and reproducibility for samples similar to real-world cases. In silico proficiency testing or institutional data exchange will ensure consistency among clinical laboratories. OBJECTIVE.­: To provide molecular pathologists a step-by-step guide to bioinformatics analysis and validation design in order to navigate the regulatory and validation standards of implementing a bioinformatic pipeline as a part of a new clinical NGS assay. DATA SOURCES.­: This guide uses published studies on genomic analysis, bioinformatics methods, and methods comparison studies to inform the reader on what resources, including open source software tools and databases, are available for genetic variant detection and interpretation. CONCLUSIONS.­: This review covers 4 key concepts: (1) bioinformatic analysis design for detecting genetic variation, (2) the resources for assessing genetic effects, (3) analysis validation assessment experiments and data sets, including a diverse set of samples to mimic real-world challenges that assess accuracy and reproducibility, and (4) if concordance between clinical laboratories will be improved by proficiency testing designed to test bioinformatic pipelines.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Patologia Molecular/métodos , Humanos , Software
11.
Lab Invest ; 100(1): 16-26, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31292541

RESUMO

Gastroesophageal junction (GEJ) cancer remains a clinically significant disease in Western countries due to its increasing incidence, which mirrors that of esophageal cancer, and poor prognosis. To develop novel and effective approaches for prevention, early detection, and treatment of patients with GEJ cancer, a better understanding of the mechanisms driving pathogenesis and malignant progression of this disease is required. These efforts have been limited by the small number of available cell lines and appropriate preclinical animal models for in vitro and in vivo studies. We have established and characterized a novel GEJ cancer cell line, GEAMP, derived from the malignant pleural effusion of a previously treated GEJ cancer patient. Comprehensive genetic analyses confirmed a clonal relationship between GEAMP cells and the primary tumor. Targeted next-generation sequencing identified 56 nonsynonymous alterations in 51 genes including TP53 and APC, which are commonly altered in GEJ cancer. In addition, multiple copy-number alterations were found including EGFR and K-RAS gene amplifications and loss of CDKN2A and CDKN2B. Histological examination of subcutaneous flank xenografts in nude and NOD-SCID mice showed a carcinoma with mixed squamous and glandular differentiation, suggesting GEAMP cells contain a subpopulation with multipotent potential. Finally, pharmacologic inhibition of the EGFR signaling pathway led to downregulation of key downstream kinases and inhibition of cell proliferation in vitro. Thus, GEAMP represents a valuable addition to the limited number of bona fide GEJ cancer cell lines.


Assuntos
Adenocarcinoma/patologia , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Junção Esofagogástrica/patologia , Derrame Pleural Maligno/patologia , Adenocarcinoma/terapia , Animais , Receptores ErbB/antagonistas & inibidores , Neoplasias Esofágicas/terapia , Evolução Fatal , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Pessoa de Meia-Idade , Derrame Pleural Maligno/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Curr Protoc Bioinformatics ; 67(1): e83, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31524992

RESUMO

The 16S ribosomal RNA (rRNA) gene is one of the scaffolding molecules of the prokaryotic ribosome. Because this gene is slow to evolve and has very well conserved regions, this gene is used to reconstruct phylogenies in prokaryotes. Universal primers can be used to amplify the gene in prokaryotes including bacteria and archaea. To determine the microbial composition in microbial communities using high-throughput short-read sequencing techniques, primers are designed to span two or three of the nine variable regions of the gene. Mothur, developed in 2009, is a suite of tools to study the composition and structure of bacterial communities. This package is freely available from the developers (https://www.mothur.org). This protocol will show how to (1) perform preprocessing of sequences to remove errors, (2) perform operational taxonomic unit (OTU) analysis to determine alpha and beta diversity, and (3) determine the taxonomic profile of OTUs and the environmental sample. © 2019 The Authors.


Assuntos
Archaea/genética , Bactérias/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Classificação , Primers do DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
14.
Microbiome ; 7(1): 18, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744677

RESUMO

BACKGROUND: The gut microbiome plays a fundamental role in the human host's overall health by contributing key biological functions such as expanded metabolism and pathogen defense/immune control. In a healthy individual, the gut microbiome co-exists within the human host in a symbiotic, non-inflammatory relationship that enables mutual benefits, such as microbial degradation of indigestible food products into small molecules that the host can utilize, and enhanced pathogen defense. In abnormal conditions, such as Crohn's disease, this favorable metabolic relationship breaks down and a variety of undesirable activities result, including chronic inflammation and other health-related issues. It has been difficult, however, to elucidate the overall functional characteristics of this relationship because the microbiota can vary substantially in composition for healthy humans and possibly even more in individuals with gut disease conditions such as Crohn's disease. Overall, this suggests that microbial membership composition may not be the best way to characterize a phenotype. Alternatively, it seems to be more informative to examine and characterize the functional composition of a gut microbiome. Towards that end, this study examines 25 metaproteomes measured in several Crohn's disease patients' post-resection surgery across the course of 1 year, in order to examine persistence of microbial taxa, genes, proteins, and metabolic functional distributions across time in individuals whose microbiome might be more variable due to the gut disease condition. RESULTS: The measured metaproteomes were highly personalized, with all the temporally-related metaproteomes clustering most closely by individual. In general, the metaproteomes were remarkably distinct between individuals and to a lesser extent within individuals. This prompted a need to characterize the metaproteome at a higher functional level, which was achieved by annotating identified protein groups with KEGG orthologous groups to infer metabolic modules. At this level, similar and redundant metabolic functions across multiple phyla were observed across time and between individuals. Tracking through these various metabolic modules revealed a clear path from carbohydrate, lipid, and amino acid degradation to central metabolism and finally the production of fermentation products. CONCLUSIONS: The human gut metaproteome can vary quite substantially across time and individuals. However, despite substantial intra-individual variation in the metaproteomes, there is a clear persistence of conserved metabolic functions across time and individuals. Additionally, the persistence of these core functions is redundant across multiple phyla but is not always observable in the same sample. Finally, the gut microbiome's metabolism is not driven by a set of discrete linear pathways but a web of interconnected reactions facilitated by a network of enzymes that connect multiple molecules across multiple pathways.


Assuntos
Bactérias/metabolismo , Doença de Crohn/microbiologia , Microbioma Gastrointestinal/fisiologia , Proteoma/metabolismo , Acetilglucosamina/análise , Adulto , Bactérias/genética , Doença de Crohn/cirurgia , Ácido N-Acetilneuramínico do Monofosfato de Citidina/análise , Ácidos Graxos Voláteis/análise , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , RNA Ribossômico 16S/genética
17.
Nat Immunol ; 17(6): 646-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111142

RESUMO

Group 2 innate lymphoid cells (ILC2 cells) are important for type 2 immune responses and are activated by the epithelial cytokines interleukin 33 (IL-33), IL-25 and thymic stromal lymphopoietin (TSLP). Here we demonstrated that IL-1ß was a critical activator of ILC2 cells, inducing proliferation and cytokine production and regulating the expression of epithelial cytokine receptors. IL-1ß also governed ILC2 plasticity by inducing low expression of the transcription factor T-bet and the cytokine receptor chain IL-12Rß2, which enabled the conversion of these cells into an ILC1 phenotype in response to IL-12. This transition was marked by an atypical chromatin landscape characterized by the simultaneous transcriptional accessibility of the locus encoding interferon-γ (IFN-γ) and the loci encoding IL-5 and IL-13. Finally, IL-1ß potentiated ILC2 activation and plasticity in vivo, and IL-12 acted as the switch that determined an ILC2-versus-ILC1 response. Thus, we have identified a previously unknown role for IL-1ß in facilitating ILC2 maturation and plasticity.


Assuntos
Plasticidade Celular , Imunidade Inata , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Linfócitos/imunologia , Animais , Diferenciação Celular , Plasticidade Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-33/metabolismo , Camundongos , Camundongos SCID , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/metabolismo , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Equilíbrio Th1-Th2 , Células Th2/imunologia , Linfopoietina do Estroma do Timo
18.
BMC Genomics ; 16: 602, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26268606

RESUMO

BACKGROUND: Deidentified newborn screening bloodspot samples (NBS) represent a valuable potential resource for genomic research if impediments to whole exome sequencing of NBS deoxyribonucleic acid (DNA), including the small amount of genomic DNA in NBS material, can be overcome. For instance, genomic analysis of NBS could be used to define allele frequencies of disease-associated variants in local populations, or to conduct prospective or retrospective studies relating genomic variation to disease emergence in pediatric populations over time. In this study, we compared the recovery of variant calls from exome sequences of amplified NBS genomic DNA to variant calls from exome sequencing of non-amplified NBS DNA from the same individuals. RESULTS: Using a standard alignment-based Genome Analysis Toolkit (GATK), we find 62,000-76,000 additional variants in amplified samples. After application of a unique kmer enumeration and variant detection method (RUFUS), only 38,000-47,000 additional variants are observed in amplified gDNA. This result suggests that roughly half of the amplification-introduced variants identified using GATK may be the result of mapping errors and read misalignment. CONCLUSIONS: Our results show that it is possible to obtain informative, high-quality data from exome analysis of whole genome amplified NBS with the important caveat that different data generation and analysis methods can affect variant detection accuracy, and the concordance of variant calls in whole-genome amplified and non-amplified exomes.


Assuntos
Exoma , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , Teste em Amostras de Sangue Seco/métodos , Genoma Humano , Humanos , Recém-Nascido , Triagem Neonatal/métodos
19.
J Investig Med ; 63(5): 729-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25775034

RESUMO

OBJECTIVES: Differences in gut bacteria have been described in several autoimmune disorders. In this exploratory pilot study, we compared gut bacteria in patients with multiple sclerosis and healthy controls and evaluated the influence of glatiramer acetate and vitamin D treatment on the microbiota. METHODS: Subjects were otherwise healthy white women with or without relapsing-remitting multiple sclerosis who were vitamin D insufficient. Patients with multiple sclerosis were untreated or were receiving glatiramer acetate. Subjects collected stool at baseline and after 90 days of vitamin D3 (5000 IU/d) supplementation. The abundance of operational taxonomic units was evaluated by hybridization of 16S rRNA to a DNA microarray. RESULTS: While there was overlap of gut bacterial communities, the abundance of some operational taxonomic units, including Faecalibacterium, was lower in patients with multiple sclerosis. Glatiramer acetate-treated patients with multiple sclerosis showed differences in community composition compared with untreated subjects, including Bacteroidaceae, Faecalibacterium, Ruminococcus, Lactobacillaceae, Clostridium, and other Clostridiales. Compared with the other groups, untreated patients with multiple sclerosis had an increase in the Akkermansia, Faecalibacterium, and Coprococcus genera after vitamin D supplementation. CONCLUSIONS: While overall bacterial communities were similar, specific operational taxonomic units differed between healthy controls and patients with multiple sclerosis. Glatiramer acetate and vitamin D supplementation were associated with differences or changes in the microbiota. This study was exploratory, and larger studies are needed to confirm these preliminary results.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Colecalciferol/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Acetato de Glatiramer/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Adjuvantes Imunológicos/farmacologia , Adulto , Colecalciferol/farmacologia , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal/fisiologia , Acetato de Glatiramer/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Pessoa de Meia-Idade , Projetos Piloto
20.
Cell ; 159(2): 253-66, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25284151

RESUMO

To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Camundongos/microbiologia , Animais , Bactérias/metabolismo , Ecossistema , Estuários , Vida Livre de Germes , Humanos , Isópteros/microbiologia , Interações Microbianas , Pele/microbiologia , Microbiologia do Solo , Simbiose , Língua/microbiologia , Peixe-Zebra/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...