Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473595

RESUMO

In this study, we have improved the power factor of conductive polymer nanocomposites by combining layer-by-layer assembly with electrochemical deposition to produce flexible thermoelectric materials based on PEDOT/carbon nanotubes (CNTs)-films. To produce films based on CNTs and PEDOT, a dual approach has been employed: (i) the layer-by-layer method has been utilized for constructing the CNTs layer and (ii) electrochemical polymerization has been used in the synthesis of the conducting polymer. Moreover, the thermoelectric properties were optimized by controlling the experimental conditions including the number of deposition cycles and electropolymerizing time. The electrical characterization of the samples was carried out by measuring the Seebeck voltage produced under a small temperature difference and by measuring the electrical conductivity using the four-point probe method. The resulting values of the Seebeck coefficient S and σ were used to determine the power factor. The structural and morphological analyses of CNTs/PEDOT samples were carried out using scanning electron microscopy (SEM) and Raman spectroscopy. The best power factor achieved was 131.1 (µWm-1K-2), a competitive value comparable to some inorganic thermoelectric materials. Since the synthesis of the CNT/PEDOT layers is rather simple and the ingredients used are relatively inexpensive and environmentally friendly, the proposed nanocomposites are a very interesting approach as an application for recycling heat waste.

2.
Phys Rev Lett ; 130(17): 176901, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172240

RESUMO

Magnetic 2D materials hold promise to change the miniaturization paradigm of unidirectional photonic components. However, the integration of these materials in devices hinges on the accurate determination of the optical properties down to the monolayer limit, which is still missing. By using hyperspectral wide-field imaging at room temperature, we reveal a nonmonotonic thickness dependence of the complex optical dielectric function in the archetypal magnetic 2D material CrI_{3} extending across different length scales: onsetting at the mesoscale, peaking at the nanoscale, and decreasing again down to the single layer. These results portray a modification of the electronic properties of the material and align with the layer-dependent magnetism in CrI_{3}, shedding light on the long-standing structural conundrum in this material. The unique modulation of the complex dielectric function from the monolayer up to more than 100 layers will be instrumental for understanding mesoscopic effects in layered materials and tuning light-matter interactions in magnetic 2D materials.

3.
ACS Appl Mater Interfaces ; 14(17): 19295-19303, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451835

RESUMO

Thermoelectric (TE) materials can have a strong benefit to harvest thermal energy if they can be applied to large areas without losing their performance over time. One way of achieving large-area films is through hybrid materials, where a blend of TE materials with polymers can be applied as coating. Here, we present the development of all solution-processed TE ink and hybrid films with varying contents of TE Sb2Te3 and Bi2Te3 nanomaterials, along with their characterization. Using (1-methoxy-2-propyl) acetate (MPA) as the solvent and poly (methyl methacrylate) as the durable polymer, large-area homogeneous hybrid TE films have been fabricated. The conductivity and TE power factor improve with nanoparticle volume fraction, peaking around 60-70% solid material fill factor. For larger fill factors, the conductivity drops, possibly because of an increase in the interface resistance through interface defects and reduced connectivity between the platelets in the medium. The use of dodecanethiol (DDT) as an additive in the ink formulation enabled an improvement in the electrical conductivity through modification of interfaces and the compactness of the resultant films, leading to a 4-5 times increase in the power factor for both p- and n-type hybrid TE films, respectively. The observed trends were captured by combining percolation theory with analytical resistive theory, with the above assumption of increasing interface resistance and connectivity with polymer volume reduction. The results obtained on these hybrid films open a new low-cost route to produce and implement TE coatings on a large scale, which can be ideal for driving flexible, large-area energy scavenging technologies such as personal medical devices and the IoT.

4.
ACS Appl Mater Interfaces ; 12(41): 46348-46356, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32965099

RESUMO

Energy harvesting through residual heat is considered one of the most promising ways to power wearable devices. In this work, thermoelectric textiles were prepared by coating the fabrics, first with multiple-wall carbon nanotubes (MWCNTs) by using the layer-by-layer technique and second with poly(3,4-ethylenedioxythiophene) (PEDOT) deposited by electrochemical polymerization. Sodium deoxycholate and poly(diallyldimethylammonium chloride) were used as stabilizers to prepare the aqueous dispersions of MWCNTs. The electrochemical deposition of PEDOT on the MWCNT-coated fabric was carried out in a three-electrode electrochemical cell. The polymerization of PEDOT on the fabric increased the electrical conductivity by ten orders of magnitude (through the plane), establishing an excellent path for electric transport across the fabrics. In addition, the fibers showed a Seebeck coefficient of 14.3 µV K-1, which is characteristic of highly doped PEDOT. As a proof of concept, several thermoelectric modules were made with different elements based on the coated acrylic and cotton fabrics. The best generator made of 30 thermoelectric elements using acrylic fabrics exhibited an output power of 0.9 µW with a temperature difference of 31 K.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31715566

RESUMO

We experimentally demonstrate the dynamical tuning of the acoustic field in a surface acoustic wave (SAW) cavity defined by a periodic arrangement of metal stripes on LiNbO3 substrate. Applying a dc voltage to the ends of the metal grid results in a temperature rise due to resistive heating that changes the frequency response of the device up to 0.3%, which can be used to control the acoustic transmission through the structure. The timescale of the switching is demonstrated to be of about 200 ms. In addition, we have also performed finite-element simulations of the transmission spectrum of a model system, which exhibits a temperature dependence consistent with the experimental data. The advances shown here enable easy, continuous, dynamical control and could be applied for a variety of substrates.

7.
Nanomaterials (Basel) ; 9(5)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058842

RESUMO

Improvements in the spatial resolution of synchrotron-based X-ray probes have reached the nano-scale and they, nowadays, constitute a powerful platform for the study of semiconductor nanostructures and nanodevices that provides high sensitivity without destroying the material. Three complementary hard X-ray synchrotron techniques at the nanoscale have been applied to the study of individual nanowires (NWs) containing non-polar GaN/InGaN multi-quantum-wells. The trace elemental sensitivity of X-ray fluorescence allows one to determine the In concentration of the quantum wells and their inhomogeneities along the NW. It is also possible to rule out any contamination from the gold nanoparticle catalyst employed during the NW growth. X-ray diffraction and X-ray absorption near edge-structure probe long- and short-range order, respectively, and lead us to the conclusion that while the GaN core and barriers are fully relaxed, there is an induced strain in InGaN layers corresponding to a perfect lattice matching with the GaN core. The photoluminescence spectrum of non-polar InGaN quntum wells is affected by strain and the inhomogeneous alloy distribution but still exhibits a reasonable 20% relative internal quantum efficiency.

8.
Chem Sci ; 10(14): 4038-4047, 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31015944

RESUMO

Mastering the nanostructuration of molecular materials onto solid surfaces and understanding how this process affects their properties are of utmost importance for their integration into solid-state electronic devices. This is even more important for spin crossover (SCO) systems, in which the spin transition is extremely sensitive to size reduction effects. These bi-stable materials have great potential for the development of nanotechnological applications provided their intrinsic properties can be successfully implemented in nanometric films, amenable to the fabrication of functional nanodevices. Here we report the fabrication of crystalline ultrathin films (<1-43 nm) of two-dimensional Hofmann-type coordination polymers by using an improved layer-by-layer strategy and a close examination of their SCO properties at the nanoscale. X-ray absorption spectroscopy data in combination with extensive atomic force microscopy analysis reveal critical dependence of the SCO transition on the number of layers and the microstructure of the films. This originates from the formation of segregated nanocrystals in early stages of the growth process that coalesce into a continuous film with an increasing number of growth cycles for an overall behaviour reminiscent of the bulk. As a result, the completeness of the high spin/low spin transition is dramatically hindered for films of less than 15 layers revealing serious limitations to the ultimate thickness that might be representative of the performance of the bulk when processing SCO materials as ultrathin films. This unprecedented exploration of the particularities of the growth of SCO thin films at the nanoscale should encourage researchers to put a spotlight on these issues when contemplating their integration into devices.

9.
Nano Lett ; 18(8): 5091-5097, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30044921

RESUMO

Wurtzite semiconductor compounds have two silent modes, B1 l and B1 h. A silent mode is a vibrational mode that carries neither a dipole moment nor Raman polarizability. Thus, they are forbidden in both infrared reflectivity and Raman spectroscopy. Astonishingly, we detected the B1 l mode in high-quality, ultra-narrow GaN nanowires using resonant Raman scattering, although the B1 h was not observed, and there is no immediate explanation for this asymmetric finding. The Raman experiments were performed using several laser lines from 647 to 325 nm; the latter is a wavelength in which Raman becomes resonant. Actually, we observed the B1 l mode only in resonance, indicating that the appearance of this mode is related to Fröhlich electron-phonon interactions; i.e., a dipole moment emerging in the B1 l silent mode may not be present in the B1 h mode. To shed light onto the physical origin of these observations, we performed density functional theory calculations of the lattice dynamics in GaN. We performed a careful analysis of the different physical mechanisms that allow the forbidden mode to appear to explain the physics underlying the nonzero dipole moment in the B1 l mode, and the reason why this dipole moment is not present in the B1 h mode.

10.
Anal Chem ; 90(15): 9093-9100, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29939015

RESUMO

Oxidative stress monitoring in the neonatal period supports early outcome prediction and treatment. Glutathione (GSH) is the most abundant antioxidant in most cells and tissues, including whole blood, and its usefulness as a biomarker has been known for decades. To date, the available methods for GSH determination require laborious sample processing and the use of sophisticated laboratory equipment. To the best of our knowledge, no tools suitable for point-of-care (POC) sensing have been reported. Surface-enhanced Raman spectroscopy (SERS), performed in a microvolume capillary measurement cell, is proposed in this study as a robust approach for the quantification of GSH in human whole blood samples. The use of a silver colloid allowed a highly selective signal enhancement for GSH providing analytical enhancement factors of 3 to 4 orders of magnitude. A highly accurate determination of GSH in whole blood samples with recoveries ranging from 99 to 107% and relative standard deviations less than or equal to 18% were achieved by signal normalization with the intensity of an isotopically labeled internal standard. GSH concentrations were retrieved within 4 min using small-volume blood samples (2 µL). The developed procedure was applied to the analysis of blood of 20 healthy adults and 36 newborns, obtaining comparable results between literature and those found by SERS and a reference method. The characteristics of this novel tool are suitable for its implementation in a portable optical sensor device enabling POC testing of oxidative stress levels in newborns.


Assuntos
Glutationa/sangue , Prata/química , Análise Espectral Raman/métodos , Adulto , Humanos , Recém-Nascido , Limite de Detecção , Testes Imediatos , Tamanho da Amostra , Análise Espectral Raman/instrumentação , Propriedades de Superfície
11.
Heliyon ; 4(11): e00940, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30839794

RESUMO

Artificial Metals are polymeric semi-metallic composites obtained by combining thermosetting resins with atomized metal powders in order to achieve composite materials capable of reproducing metals, even in a rusty or corroded condition. These composites provide a solution for the reproduction of archaeological artefacts, sculptures, and ornaments for the purpose of conservation. This work explores mechanical properties of three different resins bronze composites loaded with two different proportions of metal filler. The degree of conversion of the samples was measured by differential scanning calorimetry (DSC) and flexural tests were carried out to determine their mechanical performance. In addition, the samples were characterized by scanning electron microscopy (SEM) in order to determine the morphology of the samples at the microscale.

12.
ACS Appl Mater Interfaces ; 9(24): 20826-20832, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28557413

RESUMO

In this work, flexible Te films have been synthesized by electrochemical deposition using PEDOT [poly(3,4-ethylenedioxythiophene)] nanofilms as working electrodes. The Te electrodeposition time was varied to find the best thermoelectric properties of the Te/PEDOT double layers. To show the high quality of the Te films grown on PEDOT, the samples were analyzed by Raman spectroscopy, showing the three Raman active modes of Te: E1, A1, and E2. The X-ray diffraction spectra also confirmed the presence of crystalline Te on top of the PEDOT films. The morphology of the Te/PEDOT films was studied using scanning electron microscopy, showing a homogeneous distribution of Te along the film. Also an atomic force microscope was used to analyze the quality of the Te surface. Finally, the electrical conductivity and the Seebeck coefficient of the Te/PEDOT films were measured as a function of the Te deposition time. The films showed an excellent thermoelectric behavior, giving a maximum power factor of about 320 ± 16 µW m-1 K-2 after 2.5 h of Te electrochemical deposition, a value larger than that reported for thin films of Te. Qualitative arguments to explain this behavior are given in the discussion.

13.
ACS Appl Mater Interfaces ; 9(7): 6306-6313, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28128932

RESUMO

In an effort to produce effective thermoelectric nanocomposites with multiwalled carbon nanotubes (MWCNT), layer-by-layer assembly was combined with electrochemical polymerization to create synergy that would produce a high power factor. Nanolayers of MWCNT stabilized with poly(diallyldimethylammonium chloride) or sodium deoxycholate were alternately deposited from water. Poly(3,4-ethylene dioxythiophene) [PEDOT] was then synthesized electrochemically by using this MWCNT-based multilayer thin film as the working electrode. Microscopic images show a homogeneous distribution of PEDOT around the MWCNT. The electrical resistance, conductivity (σ) and Seebeck coefficient (S) were measured before and after the PEDOT polymerization. A 30 bilayer MWCNT film (<1 µm thick) infused with PEDOT is shown to achieve a power factor (PF = S2σ) of 155 µW/m K2, which is the highest value ever reported for a completely organic MWCNT-based material and competitive with lead telluride at room temperature. The ability of this MWCNT-PEDOT film to generate power was demonstrated with a cylindrical thermoelectric generator that produced 5.5 µW with a 30 K temperature differential. This unique nanocomposite, prepared from water with relatively inexpensive ingredients, should open up new opportunities to recycle waste heat in portable/wearable electronics and other applications where low weight and mechanical flexibility are needed.

14.
Inorg Chem ; 55(18): 9361-7, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27583664

RESUMO

The synthesis and magnetostructural characterization of [Fe(III)3(µ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](ClO4)13·(CH3)2CO)6·(solvate) (2) are reported. This compound is obtained as a secondary product during synthesis of the mononuclear complex [Fe(II)(bppCOOH)2](ClO4)2 (1). The single-crystal X-ray diffraction structure of 2 shows that it contains the nonanuclear cluster of the formula [Fe(III)3(µ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](13+), which is formed by a central Fe(III)3O core coordinated to six partially deprotonated [Fe(II)(bppCOOH)(bppCOO)](+) complexes. Raman spectroscopy studies on single crystals of 1 and 2 have been performed to elucidate the spin and oxidation states of iron in 2. These studies and magnetic characterization indicate that most of the iron(II) complexes of 2 remain in the low-spin (LS) state and present a gradual and incomplete spin crossover above 300 K. On the other hand, the Fe(III) trimer shows the expected antiferromagnetic behavior. From the structural point of view, 2 represents the first example in which bppCOO(-) acts as a bridging ligand, thus forming a polynuclear magnetic complex.

15.
Nanotechnology ; 27(7): 075706, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26783144

RESUMO

We unambiguously show that the signature of Te-rich bismuth telluride is the appearance of three new peaks in the Raman spectra of Bi2Te3, located at 88, 117 and 137 cm(-1). For this purpose, we have grown stoichiometric Bi2Te3 nanowires as well as Te-rich nanowires. The absence of these peaks in stoichiometric nanowires, even in those with the smallest diameter, shows that they are not related to confinement effects or the lack of inversion symmetry, as stated in the literature, but to the existence of Te clusters. These Te clusters have been found in non-stoichiometric samples by high resolution electron microscopy, while they are absent in stoichiometric samples. The Raman spectra of the latter corresponds to the one for bulk Bi2Te3. The intensity of these Raman peaks are clearly correlated to the Te content. In order to ensure statistically meaningful results, we have investigated several regions from every sample.

16.
Phys Chem Chem Phys ; 17(23): 15140-5, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25990660

RESUMO

Poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) films have been prepared by an electrochemical method in a three electrode cell. The films have been obtained at different oxidation levels regarded as bipolaron, polaron and neutral states by varying the voltage, as is usually done in conjugated heterocyclic polymers. The voltage (-0.2 < V < 1.0 V) has been applied versus a Ag/AgCl reference electrode, producing a variation of one order of magnitude in the electrical conductivity and the Seebeck coefficient of the films. In the voltage range explored, the electrical conductivity increases from 80 to 766 S cm(-1) in PEDOT and from 15 to 160 S cm(-1) in PPy, while the Seebeck coefficient decreases from 37.0 to 9.6 µV K(-1) for PEDOT and from 51.0 to 6.7 µV K(-1) for PPy. The thermal conductivity remains unchanged with the oxidation state of the film, κ ≈ 0.35 ± 0.02 W m(-1) K(-1) for PEDOT and 0.17 ± 0.02 W m(-1) K(-1) for PPy. A maximum thermoelectric efficiency of 1.4 × 10(-2) for PEDOT and 6.8 × 10(-3) for PPy has been achieved. These changes are related to the doping level of the polymer films and they can be accurately controlled by the applied voltage. In this work, we provide a very simple method to control and optimize the power factor or the figure of merit of conducting polymers.

17.
Nanoscale Res Lett ; 9(1): 415, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25206315

RESUMO

Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1-x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

18.
Materials (Basel) ; 7(9): 6701-6732, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28788208

RESUMO

In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

19.
Nanoscale Res Lett ; 8(1): 7, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23281873

RESUMO

: We present molecular dynamics simulation of phonon thermal conductivity of semiconductor nanoribbons with an account for phonon quantum statistics. In our semiquantum molecular dynamics simulation, dynamics of the system is described with the use of classical Newtonian equations of motion where the effect of phonon quantum statistics is introduced through random Langevin-like forces with a specific power spectral density (color noise). The color noise describes interaction of the molecular system with the thermostat. The thermal transport of silicon and germanium nanoribbons with atomically smooth (perfect) and rough (porous) edges are studied. We show that the existence of rough (porous) edges and the quantum statistics of phonon change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the perfect nanoribbon with atomically smooth edges and classical phonon dynamics and statistics. The rough-edge phonon scattering and weak anharmonicity of the considered lattice produce a weakly pronounced maximum of thermal conductivity of the nanoribbon at low temperature.

20.
Nanoscale Res Lett ; 7(1): 588, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23095321

RESUMO

: Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditions: surface tension, mass density, and Raman measurements. A discussion on the validity of the results obtained through the correlation between them is the purpose of the present work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...