RESUMO
Oral tolerance blocks the development of specific immune responses to proteins ingested by the oral route. One of the first registries of oral tolerance showed that guinea pigs fed corn became refractory to hypersensitivity to corn proteins. Mice fed with chow containing corn are tolerant to zein, and parenteral injection of zein plus adjuvant blocks immunization to unrelated proteins injected concomitantly and reduces unspecific inflammation. Extensive and prolonged inflammatory infiltrate in the wound bed is one of the causes of pathological wound healing. Previous research shows that intraperitoneal injection of zein concomitant with skin injuries reduces the inflammatory infiltrate in the wound bed and improves wound healing. Herein, we tested if one subcutaneous injection of zein before skin injury improves wound healing. We also investigated how long the effects triggered by zein could improve skin wound healing. Mice fed zein received two excisional wounds on the interscapular skin under anesthesia. Zein plus Al(OH)3 was injected at the tail base at 10 min, or 3, 5, or 7 days before skin injuries. Wound healing was analyzed at days 7 and 40 after injury. Our results showed that a zein injection up to 5 days before skin injury reduced the inflammatory infiltrate, increased the number of T-cells in the wound bed, and improved the pattern of collagen deposition in the neodermis. These findings could promote the development of new strategies for the treatment and prevention of pathological healing using proteins normally found in the common diet.
Assuntos
Pele , Cicatrização , Animais , Colágeno , Cobaias , Injeções Intraperitoneais , Injeções Subcutâneas , CamundongosRESUMO
Oral tolerance blocks the development of specific immune responses to proteins ingested by the oral route. One of the first registries of oral tolerance showed that guinea pigs fed corn became refractory to hypersensitivity to corn proteins. Mice fed with chow containing corn are tolerant to zein, and parenteral injection of zein plus adjuvant blocks immunization to unrelated proteins injected concomitantly and reduces unspecific inflammation. Extensive and prolonged inflammatory infiltrate in the wound bed is one of the causes of pathological wound healing. Previous research shows that intraperitoneal injection of zein concomitant with skin injuries reduces the inflammatory infiltrate in the wound bed and improves wound healing. Herein, we tested if one subcutaneous injection of zein before skin injury improves wound healing. We also investigated how long the effects triggered by zein could improve skin wound healing. Mice fed zein received two excisional wounds on the interscapular skin under anesthesia. Zein plus Al(OH)3 was injected at the tail base at 10 min, or 3, 5, or 7 days before skin injuries. Wound healing was analyzed at days 7 and 40 after injury. Our results showed that a zein injection up to 5 days before skin injury reduced the inflammatory infiltrate, increased the number of T-cells in the wound bed, and improved the pattern of collagen deposition in the neodermis. These findings could promote the development of new strategies for the treatment and prevention of pathological healing using proteins normally found in the common diet.
RESUMO
The use of specially designed wound dressings could be an important alternative to facilitate the healing process of wounds in the hyperglycemic state. Biocompatible dressings combining chitosan and alginate can speed up wound healing by modulating the inflammatory phase, stimulating fibroblast proliferation, and aiding in remodeling phases. However, this biomaterial has not yet been explored in chronic and acute lesions of diabetic patients. The aim of this study was to evaluate the effect of topical treatment with a chitosan-alginate membrane on acute skin wounds of hyperglycemic mice. Diabetes mellitus was induced by streptozotocin (60 mg · kg-1 · day-1 for 5 days, intraperitoneally) and the cutaneous wound was performed by removing the epidermis using a surgical punch. The results showed that after 10 days of treatment the chitosan and alginate membrane (CAM) group exhibited better organization of collagen fibers. High concentrations of interleukin (IL)-1α, IL-1β, granulocyte colony-stimulating factor (G-CSF), and tumor necrosis factor-alpha (TNF-α) were detected in the first and second days of treatment. G-CSF and TNF-α level decreased after 5 days, as well as the concentrations of TNF-α and IL-10 compared with the control group (CG). In this study, the inflammatory phase of cutaneous lesions of hyperglycemic mice was modulated by the use of CAM, mostly regarding the cytokines IL-1α, IL-1β, TNF-α, G-CSF, and IL-10, resulting in better collagen III deposition. However, further studies are needed to better understand the healing stages associated with CAM use.
Assuntos
Animais , Masculino , Coelhos , Bandagens , Cicatrização/efeitos dos fármacos , Quitosana/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/fisiopatologia , Alginatos/administração & dosagem , Fatores de Tempo , Materiais Biocompatíveis/administração & dosagem , Biomarcadores/sangue , Colágeno/efeitos dos fármacos , Inflamação/prevenção & controle , Camundongos Endogâmicos C57BLRESUMO
The use of specially designed wound dressings could be an important alternative to facilitate the healing process of wounds in the hyperglycemic state. Biocompatible dressings combining chitosan and alginate can speed up wound healing by modulating the inflammatory phase, stimulating fibroblast proliferation, and aiding in remodeling phases. However, this biomaterial has not yet been explored in chronic and acute lesions of diabetic patients. The aim of this study was to evaluate the effect of topical treatment with a chitosan-alginate membrane on acute skin wounds of hyperglycemic mice. Diabetes mellitus was induced by streptozotocin (60 mg · kg-1 · day-1 for 5 days, intraperitoneally) and the cutaneous wound was performed by removing the epidermis using a surgical punch. The results showed that after 10 days of treatment the chitosan and alginate membrane (CAM) group exhibited better organization of collagen fibers. High concentrations of interleukin (IL)-1α, IL-1ß, granulocyte colony-stimulating factor (G-CSF), and tumor necrosis factor-alpha (TNF-α) were detected in the first and second days of treatment. G-CSF and TNF-α level decreased after 5 days, as well as the concentrations of TNF-α and IL-10 compared with the control group (CG). In this study, the inflammatory phase of cutaneous lesions of hyperglycemic mice was modulated by the use of CAM, mostly regarding the cytokines IL-1α, IL-1ß, TNF-α, G-CSF, and IL-10, resulting in better collagen III deposition. However, further studies are needed to better understand the healing stages associated with CAM use.