Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(9): 1074, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615714

RESUMO

The purpose of this study was to estimate the temporal variability of CO2 emission (FCO2) from O2 influx into the soil (FO2) in a reforested area with native vegetation in the Brazilian Cerrado, as well as to understand the dynamics of soil respiration in this ecosystem. The database is composed of soil respiration data, agroclimatic variables, improved vegetation index (EVI), and soil attributes used to train machine learning algorithms: artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS). The predictive performance was evaluated based on the mean absolute error (MEA), root mean square error (RMSE), mean absolute percentage error (MAPE), agreement index (d), confidence coefficient (c), and coefficient of determination (R2). The best estimation results for validation were FCO2 with multilayer perceptron neural network (MLP) (R2 = 0.53, RMSE = 0.967 µmol m-2 s-1) and radial basis function neural network (RBF) (R2 = 0.54, RMSE = 0.884 µmol m-2 s-1) and FO2 with MLP (R2 = 0.45, RMSE = 0.093 mg m-2 s-1) and RBF (R2 = 0.74, 0.079 mg m-2 s-1). Soil temperature and macroporosity are important predictors of FCO2 and FO2. The best combination of variables for training the ANFIS was selected based on trial and error. The results were as follows: FCO2 (R2 = 16) and FO2 (R2 = 29). In all models, FCO2 outperformed FO2. A primary factor analysis was performed, and FCO2 and FO2 correlated best with the weather and soil attributes, respectively.


Assuntos
Ecossistema , Monitoramento Ambiental , Brasil , Florestas , Redes Neurais de Computação , Respiração , Solo
2.
Environ Sci Pollut Res Int ; 30(21): 61052-61071, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37046160

RESUMO

Soil CO2 emission (FCO2) is a critical component of the global carbon cycle, but it is a source of great uncertainty due to the great spatial and temporal variability. Modeling of soil respiration can strongly contribute to reducing the uncertainties associated with the sources and sinks of carbon in the soil. In this study, we compared five machine learning (ML) models to predict the spatiotemporal variability of FCO2 in three reforested areas: eucalyptus (RE), pine (RP) and native species (RNS). The study also included a generalized scenario (GS) where all the data from RE, RP and RNS were included in one dataset. The ML models include generalized regression neural network (GRNN), radial basis function neural network (RBFNN), multilayer perceptron neural network (MLPNN), adaptive neuro-fuzzy inference system (ANFIS) and random forest (RF). Initially, we had 32 attributes and after pre-processing, including Pearson's correlation, canonical correlation analysis (CCA), and biophysical justification, only 21 variables remained. We used as input variables 19 soil properties and climate variables in reforested areas of eucalyptus, pine and native species. RF was the best model to predict soil respiration to RE [adjusted coefficient of determination (R2 adj): 0.70 and root mean square error (RMSE): 1.02 µmol m-2 s-1], RP (R2 adj: 0.48 and RMSE: 1.07 µmol m-2 s-1) and GS (R2 adj: 0.70 and RMSE: 1.05 µmol m-2 s-1). Our findings support that RF and GRNN are promising for predicting soil respiration of reforested areas which could help to identify and monitor potential sources and sinks of the main additional greenhouse gas over ecosystems.


Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/análise , Brasil , Ecossistema , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...