Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(12): 718, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36401687

RESUMO

Bacterial and fungal communities in the honey of sympatric populations of the bee species Apis mellifera and Melipona beecheii were profiled by amplicon sequencing of the 16S gene and the ITS of the ribosomal DNA. Results showed that the structure of the honey microbiota of these two bee species was very different from each other. Both the bacterial and fungal species in A. mellifera honey were more similar to those of A. mellifera honey reported for other parts of the world than to those in M. beecheii honey. Nevertheless, in both, the most abundant bacterial species belonged to the family Lactobacillaeae.


Assuntos
Mel , Micobioma , Abelhas , Animais , Mel/análise , México , Bactérias/genética
2.
PeerJ ; 9: e12164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721958

RESUMO

Nutrition is vital for health and immune function in honey bees (Apis mellifera). The effect of diets enriched with bee-associated yeasts and essential oils of Mexican oregano (Lippia graveolens) was tested on survival, food intake, accumulated fat body tissue, and gene expression of vitellogenin (Vg), prophenoloxidase (proPO) and glucose oxidase (GOx) in newly emerged worker bees. The enriched diets were provided to bees under the premise that supplementation with yeasts or essential oils can enhance health variables and the expression of genes related to immune function in worker bees. Based on a standard pollen substitute, used as a control diet, enriched diets were formulated, five with added bee-associated yeasts (Starmerella bombicola, Starmerella etchellsii, Starmerella bombicola 2, Zygosaccharomyces mellis, and the brewers' yeast Saccharomyces cerevisiae) and three with added essential oils from L. graveolens (carvacrol, thymol, and sesquiterpenes). Groups of bees were fed one of the diets for 9 or 12 days. Survival probability was similar in the yeast and essential oils treatments in relation to the control, but median survival was lower in the carvacrol and sesquiterpenes treatments. Food intake was higher in all the yeast treatments than in the control. Fat body percentage in individual bees was slightly lower in all treatments than in the control, with significant decreases in the thymol and carvacrol treatments. Expression of the genes Vg, proPO, and GOx was minimally affected by the yeast treatments but was adversely affected by the carvacrol and thymol treatments.

3.
New Phytol ; 224(2): 949-960, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276214

RESUMO

The interspecific range of epigenetic variation and the degree to which differences between angiosperm species are related to geography, evolutionary history, ecological settings or species-specific traits, remain essentially unexplored. Genome-wide global DNA cytosine methylation is a tractable 'epiphenotypic' feature suitable for exploring these relationships. Global cytosine methylation was estimated in 279 species from two distant, ecologically disparate geographical regions: Mediterranean Spain and tropical México. At each region, four distinct plant communities were analyzed. Global methylation spanned a 10-fold range among species (4.8-42.2%). Interspecific differences were related to evolutionary trajectories, as denoted by a strong phylogenetic signal. Genomes of tropical species were on average less methylated than those of Mediterranean ones. Woody plants have genomes with lower methylation than perennial herbs, and genomes of widespread species were less methylated than those of species with restricted geographical distribution. The eight communities studied exhibited broad and overlapping interspecific variances in global cytosine methylation and only two of them differed in average methylation. Altogether, our broad taxonomic survey supported global methylation as a plant 'epiphenotypic' trait largely associated with species evolutionary history, genome size, range size and woodiness. Additional studies are required for better understanding the environmental components underlying local and geographical variation.


Assuntos
Ecossistema , Magnoliopsida/genética , Magnoliopsida/fisiologia , Plantas/classificação , Plantas/genética , Clima Tropical , Metilação de DNA , Demografia , Regulação da Expressão Gênica de Plantas , Região do Mediterrâneo
4.
PeerJ ; 5: e3517, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717591

RESUMO

We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

5.
PLoS One ; 9(11): e111402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25365043

RESUMO

Temperature is one of the main environmental factors involved in global warming and has been found to have a direct effect on plants. However, few studies have investigated the effect of higher temperature on tropical crops. We therefore performed an experiment with a tropical crop of Habanero pepper (Capsicum Chinense Jacq.). Three growth chambers were used, each with 30 Habanero pepper plants. Chambers were maintained at a diurnal maximum air temperature (DMT) of 30 (chamber 1), 35 (chamber 2) and 40°C (chamber 3). Each contained plants from seedling to fruiting stage. Physiological response to variation in DMT was evaluated for each stage over the course of five months. The results showed that both leaf area and dry mass of Habanero pepper plants did not exhibit significant differences in juvenile and flowering phenophases. However, in the fruiting stage, the leaf area and dry mass of plants grown at 40°C DMT were 51 and 58% lower than plants at 30°C DMT respectively. Meanwhile, an increase in diurnal air temperature raised both stomatal conductance and transpiration rate, causing an increase in temperature deficit (air temperature - leaf temperature). Thus, leaf temperature decreased by 5°C, allowing a higher CO2 assimilation rate in plants at diurnal maximum air temperature (40°C). However, in CO2 measurements when leaf temperature was set at 40°C, physiological parameters decreased due to an increase in stomatal limitation. We conclude that the thermal optimum range in a tropical crop such as Habanero pepper is between 30 and 35°C (leaf temperature, not air temperature). In this range, gas exchange through stomata is probably optimal. Also, the air temperature-leaf temperature relationship helps to explain how temperature keeps the major physiological processes of Habanero pepper healthy under experimental conditions.


Assuntos
Adaptação Biológica , Capsicum/fisiologia , Temperatura Alta , Capsicum/crescimento & desenvolvimento , Folhas de Planta , Estômatos de Plantas
6.
Proc Biol Sci ; 277(1682): 747-54, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-19889702

RESUMO

Identifying the rules and mechanisms that determine the composition and diversity of naturally co-occurring species assemblages is a central topic in community ecology. Although micro-organisms represent the 'unseen majority' of species, individuals and biomass in many ecosystems and play pivotal roles in community development and function, the study of the factors influencing the assembly of microbial communities has lagged behind that of plant and animal communities. In this paper, we investigate experimentally the mechanisms accounting for the low species richness of yeast communities inhabiting the nectar of the bumble-bee-pollinated Helleborus foetidus (Ranunculaceae), and explore the relationships between community assembly rules and phylogenetic relatedness. By comparing yeast communities on the glossae of foraging bumble-bees (the potential species pool) with those eventually establishing in virgin nectar probed with bee glossae (the realized community), we address the questions: (i) does nectar filter yeast inocula, so that the communities eventually established there are not random subsamples of species on bumble-bee glossae? and (ii) do yeast communities establishing in H. foetidus nectar exhibit some phylogenetic bias relative to the species pool on bumble-bee glossae? Results show that nectar filtering leads to species-poor, phylogenetically clustered yeast communities that are a predictable subset of pollinator-borne inocula. Such strong habitat filtering is probably due to H. foetidus nectar representing a harsh environment for most yeasts, where only a few phylogenetically related nectar specialists physiologically endowed to tolerate a combination of high osmotic pressure and fungicidal compounds are able to develop.


Assuntos
Abelhas/fisiologia , Ecossistema , Flores/microbiologia , Filogenia , Leveduras/crescimento & desenvolvimento , Animais , Flores/química , Néctar de Plantas/química , Polinização , Ranunculaceae , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
7.
Plant Signal Behav ; 4(11): 1102-4, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20009562

RESUMO

Olfactory floral signals are significant factors in plant-pollinator mutualisms. Recently, unusual fermentation odors have been described in the nectar and flowers of some species. Since yeasts are common inhabitants of many angiosperms nectars, this raises the possibility that nectar yeasts may act as causal agents of fermentation odors in flowers and, therefore, as possible intermediate agents in plant signaling to pollinators. A recent field study has reported that nectar yeasts were quite frequent in floral nectar across three different regions in Europe and America, where they reached high densities (up to 10(5) cells/mm(3)). Yeast incidence in floral nectar differed widely across plant host species in all sampling sites. A detailed study currently in progress on one of the species surveyed in that study (Helleborus foetidus, Ranunculaceae) has detected that, in addition to interespecific differences in yeast incidence, there is also a strong component of variance in yeast abundance that takes place at the subindividual level (among flowers of the same plant, among nectaries of the same flower). If yeast metabolism is eventually proved to contribute significantly to floral scent, then multilevel patchiness in the distribution of nectar yeasts (among species, among individuals within species, and among flowers and nectaries of the same individual) might contribute to concomitant multilevel variation in plant signaling and, eventually, also in pollination success, pollen flow and plant fitness.


Assuntos
Flores/microbiologia , Helleborus/microbiologia , Insetos , Odorantes , Néctar de Plantas , Polinização , Leveduras , Animais
8.
Ann Bot ; 103(9): 1415-23, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19208669

RESUMO

BACKGROUND AND AIMS: One peculiarity of floral nectar that remains relatively unexplored from an ecological perspective is its role as a natural habitat for micro-organisms. This study assesses the frequency of occurrence and abundance of yeast cells in floral nectar of insect-pollinated plants from three contrasting plant communities on two continents. Possible correlations between interspecific differences in yeast incidence and pollinator composition are also explored. METHODS: The study was conducted at three widely separated areas, two in the Iberian Peninsula (Spain) and one in the Yucatán Peninsula (Mexico). Floral nectar samples from 130 species (37-63 species per region) in 44 families were examined microscopically for the presence of yeast cells. For one of the Spanish sites, the relationship across species between incidence of yeasts in nectar and the proportion of flowers visited by each of five major pollinator categories was also investigated. KEY RESULTS: Yeasts occurred regularly in the floral nectar of many species, where they sometimes reached extraordinary densities (up to 4 x 10(5) cells mm(-3)). Depending on the region, between 32 and 44 % of all nectar samples contained yeasts. Yeast cell densities in the order of 10(4) cells mm(-3) were commonplace, and densities >10(5) cells mm(-3) were not rare. About one-fifth of species at each site had mean yeast cell densities >10(4) cells mm(-3). Across species, yeast frequency and abundance were directly correlated with the proportion of floral visits by bumble-bees, and inversely with the proportion of visits by solitary bees. CONCLUSIONS: Incorporating nectar yeasts into the scenario of plant-pollinator interactions opens up a number of intriguing avenues for research. In addition, with yeasts being as ubiquitous and abundant in floral nectars as revealed by this study, and given their astounding metabolic versatility, studies focusing on nectar chemical features should carefully control for the presence of yeasts in nectar samples.


Assuntos
Flores/microbiologia , Mel/microbiologia , Leveduras/isolamento & purificação , Animais , Contagem de Colônia Microbiana , Ecossistema , Polinização , Leveduras/citologia , Leveduras/metabolismo
9.
Am J Bot ; 95(3): 315-20, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21632356

RESUMO

We experimentally tested the hypothesis that the extensive within-plant variation of nectar sugar composition in Helleborus foetidus (Ranunculaceae) and other species results from differences between flowers and nectaries in pollinator visitation history. Experiments were conducted to mimic single-nectary visits by wild-caught individuals of the main bee pollinators of H. foetidus, which were assayed for their capacity to modify the sugar composition of natural and artificial nectar. Experimental nectar probing with bee mouthparts induced extensive changes in proportional sugar composition 48 h after treatment, and bee taxa differed widely in their effects. Nectar probing by Andrena, medium-sized Anthophoridae, Apis mellifera, and Lasioglossum had no subsequent effects on nectar sugar composition, while probing by Bombus terrestris and B. pratorum induced an extensive reduction in percentage sucrose, a marked increase in percentage fructose, and a slight increase in percentage glucose. Results support the hypothesis that stochastic variations among flowers or nectaries in the taxonomic identity of recent visitors and their relative visitation frequencies may eventually generate very small-scale mosaics in nectar sugar composition. Changes in nectar sugar composition following bumblebee probing may be the consequence of nectar contamination with pollinator-borne nectarivorous yeasts.

10.
Ann Bot ; 99(4): 653-60, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17259227

RESUMO

BACKGROUND AND AIMS: Intra-specific variation in nectar chemistry under natural conditions has been only rarely explored, yet it is an essential aspect of our understanding of how pollinator-mediated selection might act on nectar traits. This paper examines intra-specific variation in nectar sugar composition in field and glasshouse plants of the bumblebee-pollinated perennial herbs Aquilegia vulgaris subsp. vulgaris and Aquilegia pyrenaica subsp. cazorlensis (Ranunculaceae). The aims of the study are to assess the generality of extreme intra-plant variation in nectar sugar composition recently reported for other species in the field, and gaining insight on the possible mechanisms involved. METHODS: The proportions of glucose, fructose and sucrose in single-nectary nectar samples collected from field and glasshouse plants were determined using high performance liquid chromatography. A hierarchical variance partition was used to dissect total variance into components due to variation among plants, flowers within plants, and nectaries within flowers. KEY RESULTS: Nectar of the two species was mostly sucrose-dominated, but composition varied widely in the field, ranging from sucrose-only to fructose-dominated. Most intra-specific variance was due to differences among nectaries of the same flower, and flowers of the same plant. The high intra-plant variation in sugar composition exhibited by field plants vanished in the glasshouse, where nectar composition emerged as a remarkably constant feature across plants, flowers and nectaries. CONCLUSIONS: In addition to corroborating the results of previous studies documenting extreme intra-plant variation in nectar sugar composition in the field, this study suggests that such variation may ultimately be caused by biotic factors operating on the nectar in the field but not in the glasshouse. Pollinator visitation and pollinator-borne yeasts are suggested as likely causal agents.


Assuntos
Aquilegia/metabolismo , Metabolismo dos Carboidratos , Flores/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Especificidade da Espécie , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...