Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33618021

RESUMO

The expression of TMEM97, a regulator of cholesterol transport, has been reported to be enhanced in some tumour cells. We have recently shown that TMEM97 is involved in the proliferation of the breast cancer cell line MDA-MB-231, probably through changes in store-operated calcium entry (SOCE). By using silencing and overexpression of TMEM97 in MDA-MB-231 cells (two manoeuvres that either reduce or increase the calcium influx, respectively), we show enhanced cholesterol uptake in these cells as compared to the non-tumoral breast cell line, MCF10A. The enhanced cholesterol uptake in MDA-MB-231 cells was inhibited by silencing TMEM97, while overexpression of this protein increased cholesterol uptake in MCF10A cells and, therefore, indicating that this protein plays a role in the enhanced cholesterol uptake in MDA-MB-231 cancer cell line. TMEM97 silencing and overexpression resulted in an increase and decrease in the association of cholesterol to the SOCE calcium channel Orai1, respectively. Interestingly, silencing of TMEM97 in MDA-MB-231 cells significantly reduced the co-localization of Orai1 with the SOCE regulatory protein STIM1. Finally, neither silencing nor overexpression of TMEM97 altered SOCE in MDA-MB-231 cells transfected with the cholesterol insensible mutant of Orai1(Y80E). Our results reveal a novel regulatory mechanism of SOCE that relies on TMEM97 activity that courses through the reduction of the cholesterol content in the plasma membrane, and subsequently, by impairing its interaction with Orai1.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Regulação para Baixo , Proteínas de Membrana/metabolismo , Proteína ORAI1/metabolismo , Linhagem Celular Tumoral , Humanos , Transporte Proteico
2.
Cell Calcium ; 80: 1-7, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30921687

RESUMO

Ca2+ channels play an important role in the development of different types of cancer, and considerable progress has been made to understand the pathophysiological mechanisms underlying the role of Ca2+ influx in the development of different cancer hallmarks. Orai1 is among the most ubiquitous and multifunctional Ca2+ channels. Orai1 mediates the highly Ca2+-selective Ca2+ release-activated current (ICRAC) and participates in the less Ca2+-selective store-operated current (ISOC), along with STIM1 or STIM1 and TRPC1, respectively. Furthermore, Orai1 contributes to a variety of store-independent Ca2+ influx mechanisms, including the arachidonate-regulated Ca2+ current, together with Orai3 and the plasma membrane resident pool of STIM1, as well as the constitutive Ca2+ influx processes activated by the secretory pathway Ca2+-ATPase-2 (SPCA2) or supported by physical and functional interaction with the small conductance Ca2+-activated K+ channel 3 (SK3) or the voltage-dependent Kv10.1 channel. This review summarizes the current knowledge concerning the store-independent mechanisms of Ca2+ influx activation through Orai1 channels and their role in the development of different cancer features.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/metabolismo , Carcinogênese , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...