Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 3031, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194105

RESUMO

Optimisation and reproducibility of beams of protons accelerated from laser-solid interactions require accurate control of a wide set of variables, concerning both the laser pulse and the target. Among the former ones, the chirp and temporal shape of the pulse reaching the experimental area may vary because of spectral phase modulations acquired along the laser system and beam transport. Here, we present an experimental study where we investigate the influence of the laser pulse chirp on proton acceleration from ultrathin flat foils (10 and 100 nm thickness), while minimising any asymmetry in the pulse temporal shape. The results show a [Formula: see text] change in the maximum proton energy depending on the sign of the chirp. This effect is most noticeable from 10 nm-thick target foils, suggesting a chirp-dependent influence of relativistic transparency.

2.
Sci Rep ; 11(1): 5006, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658533

RESUMO

Structured solid targets are widely investigated to increase the energy absorption of high-power laser pulses so as to achieve efficient ion acceleration. Here we report the first experimental study of the maximum energy of proton beams accelerated from sub-micrometric foils perforated with holes of nanometric size. By showing the lack of energy enhancement in comparison to standard flat foils, our results suggest that the high contrast routinely achieved with a double plasma mirror does not prevent damaging of the nanostructures prior to the main interaction. Particle-in-cell simulations support that even a short scale length plasma, formed in the last hundreds of femtoseconds before the peak of an ultrashort laser pulse, fills the holes and hinders enhanced electron heating. Our findings reinforce the need for improved laser contrast, as well as for accurate control and diagnostics of on-target plasma formation.

3.
Sci Rep ; 11(1): 699, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436708

RESUMO

Developing compact ion accelerators using intense lasers is a very active area of research, motivated by a strong applicative potential in science, industry and healthcare. However, proposed applications in medical therapy, as well as in nuclear and particle physics demand a strict control of ion energy, as well as of the angular and spectral distribution of ion beam, beyond the intrinsic limitations of the several acceleration mechanisms explored so far. Here we report on the production of highly collimated ([Formula: see text] half angle divergence), high-charge (10s of pC) and quasi-monoenergetic proton beams up to [Formula: see text] 50 MeV, using a recently developed method based on helical coil targetry. In this concept, ions accelerated from a laser-irradiated foil are post-accelerated and conditioned in a helical structure positioned at the rear of the foil. The pencil beam of protons was produced by guided post-acceleration at a rate of [Formula: see text] 2 GeV/m, without sacrificing the excellent beam emittance of the laser-driven proton beams. 3D particle tracing simulations indicate the possibility of sustaining high acceleration gradients over extended helical coil lengths, thus maximising the gain from such miniature accelerating modules.

4.
Nat Commun ; 7: 10792, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27089200

RESUMO

All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(-1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA