Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 62017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28885975

RESUMO

Wnt5a-Ror signaling constitutes a developmental pathway crucial for embryonic tissue morphogenesis, reproduction and adult tissue regeneration, yet the molecular mechanisms by which the Wnt5a-Ror pathway mediates these processes are largely unknown. Using a proteomic screen, we identify the kinesin superfamily protein Kif26b as a downstream target of the Wnt5a-Ror pathway. Wnt5a-Ror, through a process independent of the canonical Wnt/ß-catenin-dependent pathway, regulates the cellular stability of Kif26b by inducing its degradation via the ubiquitin-proteasome system. Through this mechanism, Kif26b modulates the migratory behavior of cultured mesenchymal cells in a Wnt5a-dependent manner. Genetic perturbation of Kif26b function in vivo caused embryonic axis malformations and depletion of primordial germ cells in the developing gonad, two phenotypes characteristic of disrupted Wnt5a-Ror signaling. These findings indicate that Kif26b links Wnt5a-Ror signaling to the control of morphogenetic cell and tissue behaviors in vertebrates and reveal a new role for regulated proteolysis in noncanonical Wnt5a-Ror signal transduction.


Assuntos
Cinesinas/metabolismo , Transdução de Sinais , Proteína Wnt-5a/metabolismo , Animais , Linhagem Celular , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Cinesinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/efeitos dos fármacos , Proteômica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Via de Sinalização Wnt , Proteína Wnt-5a/farmacologia , beta Catenina/metabolismo
2.
Stem Cell Res ; 24: 181-187, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28754603

RESUMO

Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis.


Assuntos
Movimento Celular , Células Germinativas/citologia , Animais , Proliferação de Células , Camundongos , Transdução de Sinais
3.
Biol Open ; 6(3): 358-364, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167493

RESUMO

Smad4 is an intracellular effector of the TGFß family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFß pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFß pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFß signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre+/-;Smad4fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo, Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate.

4.
J Cell Biol ; 214(2): 215-29, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27402951

RESUMO

Inheritance depends on the expansion of a small number of primordial germ cells (PGCs) in the early embryo. Proliferation of mammalian PGCs is concurrent with their movement through changing microenvironments; however, mechanisms coordinating these conflicting processes remain unclear. Here, we find that PGC proliferation varies by location rather than embryonic age. Ror2 and Wnt5a mutants with mislocalized PGCs corroborate the microenvironmental regulation of the cell cycle, except in the hindgut, where Wnt5a is highly expressed. Molecular and genetic evidence suggests that Wnt5a acts via Ror2 to suppress ß-catenin-dependent Wnt signaling in PGCs and limit their proliferation in specific locations, which we validate by overactivating ß-catenin in PGCs. Our results suggest that the balance between expansion and movement of migratory PGCs is fine-tuned in different niches by the opposing ß-catenin-dependent and Ror2-mediated pathways through Wnt5a This could serve as a selective mechanism to favor early and efficient migrators with clonal dominance in the ensuing germ cell pool while penalizing stragglers.


Assuntos
Movimento Celular , Células Germinativas/citologia , Células Germinativas/metabolismo , Via de Sinalização Wnt , Animais , Ciclo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , Sistema Digestório/citologia , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo
5.
J Cell Sci ; 129(13): 2493-9, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199373

RESUMO

Mouse ovarian germ cells enter meiosis in a wave that propagates from anterior to posterior, but little is known about contribution of germ cells to initiation or propagation of meiosis. In a Ror2 mutant with diminished germ cell number and migration, we find that overall timing of meiotic initiation is delayed at the population level. We use chemotherapeutic depletion to exclude a profoundly reduced number of germ cells as a cause for meiotic delay. We rule out sex reversal or failure to specify somatic support cells as contributors to the meiotic phenotype. Instead, we find that anomalies in the distribution of germ cells as well as gonad shape in mutants contribute to aberrant initiation of meiosis. Our analysis supports a model of meiotic initiation via diffusible signal(s), excludes a role for germ cells in commencing the meiotic wave and furnishes the first phenotypic demonstration of the wave of meiotic entry. Finally, our studies underscore the importance of considering germ cell migration defects while studying meiosis to discern secondary effects resulting from positioning versus primary meiotic entry phenotypes.


Assuntos
Células Germinativas/metabolismo , Gônadas/patologia , Meiose/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Animais , Contagem de Células , Movimento Celular/genética , Forma Celular/genética , Feminino , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/patologia , Gônadas/crescimento & desenvolvimento , Camundongos , Mutação , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Ovário/patologia , Transdução de Sinais/genética
6.
Dev Cell ; 27(5): 485-7, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24331924

RESUMO

Reporting in Developmental Cell, Aramaki et al. (2013) identify T as a key mediator of primordial germ cell (PGC) specification in the embryo. Deconstruction of how Bmp and Wnt signals regulate the expression and targeting of T to regulatory elements of either mesodermal or PGC genes has implications for differentiation in vitro.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas Fetais/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Feminino , Masculino , Gravidez
7.
J Neurosci ; 33(43): 16874-88, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24155294

RESUMO

We have previously shown in mice that cytokine-mediated damage to the placenta can temporarily limit the flow of nutrients and oxygen to the fetus. The placental vulnerability is pronounced before embryonic day 11, when even mild immune challenge results in fetal loss. As gestation progresses, the placenta becomes increasingly resilient to maternal inflammation, but there is a narrow window in gestation when the placenta is still vulnerable to immune challenge yet resistant enough to allow for fetal survival. This gestational window correlates with early cortical neurogenesis in the fetal brain. Here, we show that maternal illness during this period selectively alters the abundance and laminar positioning of neuronal subtypes influenced by the Tbr1, Satb2, and Ctip2/Fezf2 patterning axis. The disturbances also lead to a laminar imbalance in the proportions of projection neurons and interneurons in the adult and are sufficient to cause changes in social behavior and cognition. These data illustrate how the timing of an illness-related placental vulnerability causes developmental alterations in neuroanatomical systems and behaviors that are relevant to autism spectrum disorders.


Assuntos
Córtex Cerebral/embriologia , Neurogênese , Doenças Placentárias/patologia , Placenta/patologia , Complicações Infecciosas na Gravidez/patologia , Animais , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Cognição , Transtornos Cognitivos/etiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Interneurônios/metabolismo , Interneurônios/patologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Transtornos Mentais/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Placenta/fisiopatologia , Gravidez , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Comportamento Social , Proteínas com Domínio T , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Stem Cell Res Ther ; 4(1): 3, 2013 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-23290300

RESUMO

INTRODUCTION: Nervous system injuries comprise a diverse group of disorders that include traumatic brain injury (TBI). The potential of mesenchymal stem cells (MSCs) to differentiate into neural cell types has aroused hope for the possible development of autologous therapies for central nervous system injury. METHODS: In this study we isolated and characterized a human peripheral blood derived (HPBD) MSC population which we examined for neural lineage potential and ability to migrate in vitro and in vivo. HPBD CD133+, ATP-binding cassette sub-family G member 2 (ABCG2)+, C-X-C chemokine receptor type 4 (CXCR4)+ MSCs were differentiated after priming with ß-mercaptoethanol (ß-ME) combined with trans-retinoic acid (RA) and culture in neural basal media containing basic fibroblast growth factor (FGF2) and epidermal growth factor (EGF) or co-culture with neuronal cell lines. Differentiation efficiencies in vitro were determined using flow cytometry or fluorescent microscopy of cytospins made of FACS sorted positive cells after staining for markers of immature or mature neuronal lineages. RA-primed CD133+ABCG2+CXCR4+ human MSCs were transplanted into the lateral ventricle of male Sprague-Dawley rats, 24 hours after sham or traumatic brain injury (TBI). All animals were evaluated for spatial memory performance using the Morris Water Maze (MWM) Test. Histological examination of sham or TBI brains was done to evaluate MSC survival, migration and differentiation into neural lineages. We also examined induction of apoptosis at the injury site and production of MSC neuroprotective factors. RESULTS: CD133+ABCG2+CXCR4+ MSCs consistently expressed markers of neural lineage induction and were positive for nestin, microtubule associated protein-1ß (MAP-1ß), tyrosine hydroxylase (TH), neuron specific nuclear protein (NEUN) or type III beta-tubulin (Tuj1). Animals in the primed MSC treatment group exhibited MWM latency results similar to the uninjured (sham) group with both groups showing improvements in latency. Histological examination of brains of these animals showed that in uninjured animals the majority of MSCs were found in the lateral ventricle, the site of transplantation, while in TBI rats MSCs were consistently found in locations near the injury site. We found that levels of apoptosis were less in MSC treated rats and that MSCs could be shown to produce neurotropic factors as early as 2 days following transplantation of cells. In TBI rats, at 1 and 3 months post transplantation cells were generated which expressed markers of neural lineages including immature as well as mature neurons. CONCLUSIONS: These results suggest that PBD CD133+ABCG2+CXCR4+ MSCs have the potential for development as an autologous treatment for TBI and neurodegenerative disorders and that MSC derived cell products produced immediately after transplantation may aid in reducing the immediate cognitive defects of TBI.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antígenos CD/metabolismo , Apoptose/fisiologia , Lesões Encefálicas/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fármacos Neuroprotetores/metabolismo , Peptídeos/metabolismo , Receptores CXCR4/metabolismo , Antígeno AC133 , Animais , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Neurogênese/fisiologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
9.
Tissue Eng Part A ; 16(8): 2565-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20408765

RESUMO

We report here the first attempt to produce and use whole acellular (AC) lung as a matrix to support development of engineered lung tissue from murine embryonic stem cells (mESCs). We compared the influence of AC lung, Gelfoam, Matrigel, and a collagen I hydrogel matrix on the mESC attachment, differentiation, and subsequent formation of complex tissue. We found that AC lung allowed for better retention of cells with more differentiation of mESCs into epithelial and endothelial lineages. In constructs produced on whole AC lung, we saw indications of organization of differentiating ESC into three-dimensional structures reminiscent of complex tissues. We also saw expression of thyroid transcription factor-1, an immature lung epithelial cell marker; pro-surfactant protein C, a type II pneumocyte marker; PECAM-1/CD31, an endothelial cell marker; cytokeratin 18; alpha-actin, a smooth muscle marker; CD140a or platelet-derived growth factor receptor-alpha; and Clara cell protein 10. There was also evidence of site-specific differentiation in the trachea with the formation of sheets of cytokeratin-positive cells and Clara cell protein 10-expressing Clara cells. Our findings support the utility of AC lung as a matrix for engineering lung tissue and highlight the critical role played by matrix or scaffold-associated cues in guiding ESC differentiation toward lung-specific lineages.


Assuntos
Sistema Livre de Células/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Matriz Extracelular/metabolismo , Pulmão/fisiologia , Técnicas de Cultura de Órgãos/métodos , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Ratos
10.
Biomaterials ; 30(6): 1071-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19042018

RESUMO

In vitro replicas of bone marrow can potentially provide a continuous source of blood cells for transplantation and serve as a laboratory model to examine human immune system dysfunctions and drug toxicology. Here we report the development of an in vitro artificial bone marrow based on a 3D scaffold with inverted colloidal crystal (ICC) geometry mimicking the structural topology of actual bone marrow matrix. To facilitate adhesion of cells, scaffolds were coated with a layer of transparent nanocomposite. After seeding with hematopoietic stem cells (HSCs), ICC scaffolds were capable of supporting expansion of CD34+ HSCs with B-lymphocyte differentiation. Three-dimensional organization was shown to be critical for production of B cells and antigen-specific antibodies. Functionality of bone marrow constructs was confirmed by implantation of matrices containing human CD34+ cells onto the backs of severe combined immunodeficiency (SCID) mice with subsequent generation of human immune cells.


Assuntos
Materiais Biomiméticos , Medula Óssea/anatomia & histologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Linfócitos B/citologia , Diferenciação Celular , Linhagem Celular , Coloides , Cristalização , Humanos , Camundongos , Camundongos SCID , Microscopia Eletrônica de Varredura , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...