Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Cell Rep Med ; : 101546, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38703766

RESUMO

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.

2.
Nat Genet ; 56(5): 953-969, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627598

RESUMO

The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/ß-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.


Assuntos
Homeostase , Regeneração Hepática , Fígado , Via de Sinalização Wnt , Animais , Regeneração Hepática/genética , Camundongos , Fígado/metabolismo , Via de Sinalização Wnt/genética , Hepatócitos/metabolismo , Hepatócitos/citologia , Proliferação de Células/genética , Análise de Célula Única , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Transcriptoma , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Masculino
3.
Methods Mol Biol ; 2681: 361-371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405658

RESUMO

Suspension cells derived from human embryonic kidney cells (HEK 293) are attractive cell lines for retroviral vector production in gene therapeutic development studies and applications. The low-affinity nerve growth factor receptor (NGFR) is a genetic marker frequently used as a reporter gene in transfer vectors to detect and enrich genetically modified cells. However, the HEK 293 cell line and its derivatives endogenously express the NGFR protein. To eradicate the high background NGFR expression in future retroviral vector packaging cells, we here employed the CRISPR/Cas9 system to generate human suspension 293-F NGFR knockout cells. The expression of a fluorescent protein coupled via a 2A peptide motif to the NGFR targeting Cas9 endonuclease enabled the simultaneous depletion of cells expressing Cas9 and remaining NGFR-positive cells. Thus, a pure population of NGFR-negative 293-F cells lacking persistent Cas9 expression was obtained in a simple and easily applicable procedure.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Receptor de Fator de Crescimento Neural/genética , Células HEK293 , Vetores Genéticos/genética , Receptores de Fator de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética
4.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047520

RESUMO

Most cardiomyocytes (CMs) in the adult mammalian heart are either binucleated or contain a single polyploid nucleus. Recent studies have shown that polyploidy in CMs plays an important role as an adaptive response to physiological demands and environmental stress and correlates with poor cardiac regenerative ability after injury. However, knowledge about the functional properties of polyploid CMs is limited. In this study, we generated tetraploid pluripotent stem cells (PSCs) by fusion of murine embryonic stem cells (ESCs) and somatic cells isolated from bone marrow or spleen and performed a comparative analysis of the electrophysiological properties of tetraploid fusion-derived PSCs and diploid ESC-derived CMs. Fusion-derived PSCs exhibited characteristics of genuine ESCs and contained a near-tetraploid genome. Ploidy features and marker expression were also retained during the differentiation of fusion-derived cells. Fusion-derived PSCs gave rise to CMs, which were similar to their diploid ESC counterparts in terms of their expression of typical cardiospecific markers, sarcomeric organization, action potential parameters, response to pharmacologic stimulation with various drugs, and expression of functional ion channels. These results suggest that the state of ploidy does not significantly affect the structural and electrophysiological properties of murine PSC-derived CMs. These results extend our knowledge of the functional properties of polyploid CMs and contribute to a better understanding of their biological role in the adult heart.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Tetraploidia , Diploide , Células-Tronco Embrionárias , Diferenciação Celular/genética , Poliploidia , Mamíferos
6.
Liver Int ; 42(5): 1084-1096, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184362

RESUMO

BACKGROUND AND AIMS: Progressive familial intrahepatic cholestasis (PFIC) is a collective term for a heterogenous group of rare, inherited cholestasis syndromes. The number of genes underlying the clinical PFIC phenotype is still increasing. While progressive liver disease and its sequelae such as portal hypertension, pruritus and hepatocellular carcinoma determine transplant-free survival, extrahepatic manifestations may cause relevant morbidity. METHODS: We performed a literature search for extrahepatic manifestations of PFIC associated with pathogenic gene variants in ATP8B1, ABCB11, ABCB4, TJP2, NR1H4 and MYO5B. To illustrate the extrahepatic symptoms described in the literature, PFIC cases from our centres were revisited. RESULTS: Extrahepatic symptoms are common in PFIC subtypes, where the affected gene is expressed at high levels in other tissues. While most liver-associated complications resolve after successful orthotopic liver transplantation (OLT), some extrahepatic symptoms show no response or even worsen after OLT. CONCLUSION: The spectrum of extrahepatic manifestations in PFIC highlights essential, non-redundant roles of the affected genes in other organs. Extrahepatic features contribute towards low health-related quality of life (HRQOL) and morbidity in PFIC. While OLT is often the only remaining, curative treatment, potential extrahepatic manifestations need to be carefully monitored and addressed.


Assuntos
Colestase Intra-Hepática , Colestase , Neoplasias Hepáticas , Complicações na Gravidez , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/cirurgia , Gravidez , Qualidade de Vida , Síndrome
7.
J Pediatr ; 240: 284-291.e9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555379

RESUMO

KIF12 has been identified as a cholestasis-associated candidate gene. We describe 6 cases from 4 unrelated families with diverse cholestatic phenotypes carrying 2 different homozygous KIF12 truncating variants. Immunofluorescence investigations of paraffin-embedded liver sections suggest that KIF12-associated impaired functional cell polarity may be the underlying cause.


Assuntos
Colestase/genética , Cinesinas/genética , Hepatopatias/genética , Adolescente , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Hepatócitos/metabolismo , Humanos , Masculino , Mutação , Sequenciamento Completo do Genoma
9.
Sci Rep ; 11(1): 22154, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773059

RESUMO

CRISPR prime-editors are emergent tools for genome editing and offer a versatile alternative approach to HDR-based genome engineering or DNA base-editors. However, sufficient prime-editor expression levels and availability of optimized transfection protocols may affect editing efficiencies, especially in hard-to-transfect cells like hiPSC. Here, we show that piggyBac prime-editing (PB-PE) allows for sustained expression of prime-editors. We demonstrate proof-of-concept for PB-PE in a newly designed lentiviral traffic light reporter, which allows for estimation of gene correction and defective editing resulting in indels, based on expression of two different fluorophores. PB-PE can prime-edit more than 50% of hiPSC cells after antibiotic selection. We also show that improper design of pegRNA cannot simply be overcome by extended expression, but PB-PE allows for estimation of effectiveness of selected pegRNAs after few days of cultivation time. Finally, we implemented PB-PE for efficient editing of an amyotrophic lateral sclerosis-associated mutation in the SOD1-gene of patient-derived hiPSC. Progress of genome editing can be monitored by Sanger-sequencing, whereas PB-PE vectors can be removed after editing and excised cells can be enriched by fialuridine selection. Together, we present an efficient prime-editing toolbox, which can be robustly used in a variety of cell lines even when non-optimized transfection-protocols are applied.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Transfecção/métodos , Esclerose Lateral Amiotrófica/genética , Linhagem Celular , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Superóxido Dismutase-1/genética
10.
Stem Cell Res ; 56: 102535, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34607262

RESUMO

Somatosensory low threshold mechanoreceptors (LTMRs) sense innocuous mechanical forces, largely through specialized axon termini termed sensory nerve endings, where the mechanotransduction process initiates upon activation of mechanotransducers. In humans, a subset of sensory nerve endings is enlarged, forming bulb-like expansions, termed bulbous nerve endings. There is no in vitro human model to study these neuronal endings. Piezo2 is the main mechanotransducer found in LTMRs. Recent evidence shows that Piezo1, the other mechanotransducer considered absent in dorsal root ganglia (DRG), is expressed at low level in somatosensory neurons. We established a differentiation protocol to generate, from iPSC-derived neuronal precursor cells, human LTMR recapitulating bulbous sensory nerve endings and heterogeneous expression of Piezo1 and Piezo2. The derived neurons express LTMR-specific genes, convert mechanical stimuli into electrical signals and have specialized axon termini that morphologically resemble bulbous nerve endings. Piezo2 is concentrated within these enlarged axon termini. Some derived neurons express low level Piezo1, and a subset co-express both channels. Thus, we generated a unique, iPSCs-derived human model that can be used to investigate the physiology of bulbous sensory nerve endings, and the role of Piezo1 and 2 during mechanosensation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mecanorreceptores/metabolismo , Mecanotransdução Celular , Terminações Nervosas/metabolismo , Células Receptoras Sensoriais/metabolismo
11.
J Hepatol ; 75(6): 1420-1433, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34453962

RESUMO

BACKGROUND & AIMS: Therapeutic targeting of injuries that require transient restoration of proteins by mRNA delivery is an attractive approach that, until recently, has remained poorly explored. In this study, we examined the therapeutic utility of mRNA delivery for liver fibrosis and cirrhosis. Specifically, we aimed to demonstrate the therapeutic efficacy of human hepatocyte nuclear factor alpha (HNF4A) mRNA in mouse models of fibrosis and cirrhosis. METHODS: We investigated restoration of hepatocyte functions by HNF4A mRNA transfection in vitro, and analyzed the attenuation of liver fibrosis and cirrhosis in multiple mouse models, by delivering hepatocyte-targeted biodegradable lipid nanoparticles (LNPs) encapsulating HNF4A mRNA. To identify potential mechanisms of action, we performed microarray-based gene expression profiling, single-cell RNA sequencing, and chromatin immunoprecipitation. We used primary liver cells and human liver buds for additional functional validation. RESULTS: Expression of HNF4A mRNA led to restoration of the metabolic activity of fibrotic primary murine and human hepatocytes in vitro. Repeated in vivo delivery of LNP-encapsulated HNF4A mRNA induced a robust inhibition of fibrogenesis in 4 independent mouse models of hepatotoxin- and cholestasis-induced liver fibrosis. Mechanistically, we discovered that paraoxonase 1 is a direct target of HNF4A and it contributes to HNF4A-mediated attenuation of liver fibrosis via modulation of liver macrophages and hepatic stellate cells. CONCLUSION: Collectively, our findings provide the first direct preclinical evidence of the applicability of HNF4A mRNA therapeutics for the treatment of fibrosis in the liver. LAY SUMMARY: Liver fibrosis and cirrhosis remain unmet medical needs and contribute to high mortality worldwide. Herein, we take advantage of a promising therapeutic approach to treat liver fibrosis and cirrhosis. We demonstrate that restoration of a key gene, HNF4A, via mRNA encapsulated in lipid nanoparticles decreased injury in multiple mouse models of fibrosis and cirrhosis. Our study provides proof-of-concept that mRNA therapy is a promising strategy for reversing liver fibrosis and cirrhosis.


Assuntos
Fator 4 Nuclear de Hepatócito/farmacologia , Cirrose Hepática/tratamento farmacológico , Animais , Modelos Animais de Doenças , Fator 4 Nuclear de Hepatócito/uso terapêutico , Camundongos , RNA Mensageiro/farmacologia , RNA Mensageiro/uso terapêutico
13.
Sci Rep ; 11(1): 9334, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927320

RESUMO

The pig is an important model organism for biomedical research, mainly due to its extensive genetic, physiological and anatomical similarities with humans. Until date, direct conversion of somatic cells into hepatocyte-like cells (iHeps) has only been achieved in rodents and human cells. Here, we employed lentiviral vectors to screen a panel of 12 hepatic transcription factors (TF) for their potential to convert porcine fibroblasts into hepatocyte-like cells. We demonstrate for the first time, hepatic conversion of porcine somatic cells by over-expression of CEBPα, FOXA1 and HNF4α2 (3TF-piHeps). Reprogrammed 3TF-piHeps display a hepatocyte-like morphology and show functional characteristics of hepatic cells, including albumin secretion, Dil-AcLDL uptake, storage of lipids and glycogen and activity of cytochrome P450 enzymes CYP1A2 and CYP2C33 (CYP2C9 in humans). Moreover, we show that markers of mature hepatocytes are highly expressed in 3TF-piHeps, while fibroblastic markers are reduced. We envision piHeps as useful cell sources for future studies on drug metabolism and toxicity as well as in vitro models for investigation of pig-to-human infectious diseases.


Assuntos
Técnicas de Reprogramação Celular , Fibroblastos , Hepatócitos , Fatores de Transcrição/genética , Animais , Biomarcadores/metabolismo , Técnicas de Transferência de Genes , Lentivirus , Suínos
14.
Hepatol Commun ; 4(12): 1851-1863, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33305155

RESUMO

The ability of the liver to regenerate and restore mass limits the increasing mortality rate due to life-threatening liver diseases. Successful liver regeneration is accomplished in multiple stages, of which the priming and proliferation phases are well studied. However, the regulatory pathways, specifically microRNA (miRNA)-mediated posttranscriptional regulation, which prevent uncontrolled proliferation and mediate the termination of liver regeneration, are not well understood. We identified differentially regulated miRNAs during the termination phase after 2/3 partial hepatectomy (PH) in mice, which is a well-established mouse model of liver regeneration. We further evaluated the function of differentially regulated miRNAs in primary mouse hepatocytes by using mimics and inhibitors and in vivo by using adeno-associated virus (AAV) serotype 8. A candidate miRNA target was identified by messenger RNA array in silico analyses and validated in primary mouse and human hepatocytes. Using miRNA profiling, we discovered miR-125b-5p as a novel regulator of hepatocyte proliferation in the late phase of liver regeneration. AAV-mediated miR-125b-5p delivery in mice enhanced the endogenous regenerative capacity and resulted in improved restoration of liver mass after 2/3 PH. Further, we found that ankyrin repeat and BTB/POZ domain containing protein 1 (Abtb1) is a direct target of miR-125b-5p in primary mouse and human hepatocytes and contributes to the pro-proliferative activity of miR-125b-5p by forkhead box G1 (FOXG1) and the cyclin-dependent kinase inhibitor 1A (p21) pathway. Conclusion: miR-125b-5p has an important role in regulating hepatocyte proliferation in the termination phase of liver regeneration and may serve as a potential therapeutic target in various liver diseases that often exhibit deregulated hepatocyte proliferation.

15.
BMC Med Ethics ; 21(1): 87, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32912206

RESUMO

BACKGROUND: Clustered Regularly Interspaced Short Palindromic Repeats-associated (CRISPR-Cas) technology may allow for efficient and highly targeted gene editing in single-cell embryos. This possibility brings human germline editing into the focus of ethical and legal debates again. MAIN BODY: Against this background, we explore essential ethical and legal questions of interventions into the human germline by means of CRISPR-Cas: How should issues of risk and uncertainty be handled? What responsibilities arise regarding future generations? Under which conditions can germline editing measures be therapeutically legitimized? For this purpose, we refer to a scenario anticipating potential further development in CRISPR-Cas technology implying improved accuracy and exclusion of germline transmission to future generations. We show that, if certain concepts regarding germline editing are clarified, under such conditions a categorical prohibition of one-generation germline editing of single-cell embryos appears not to be ethically or legally justifiable. CONCLUSION: These findings are important prerequisites for the international debate on the ethical and legal justification of germline interventions in the human embryo as well as for the harmonization of international legal standards.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Células Germinativas , Humanos , Incerteza
16.
Cells ; 9(9)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825374

RESUMO

Synthetic receptor biology and genome editing are emerging techniques, both of which are currently beginning to be used in preclinical and clinical applications. We were interested in whether a combination of these techniques approaches would allow for the generation of a novel type of reporter cell that would recognize transient cellular events through specifically designed synthetic receptors and would permanently store information about these events via associated gene editing. Reporting cells could be used in the future to detect alterations in the cellular microenvironment, including degenerative processes or malignant transformation into cancer cells. Here, we explored synthetic Notch (synNotch) receptors expressed in human embryonic kidney cells to investigate the efficacy of antigen recognition events in a time- and dose-dependent manner. First, we evaluated the most suitable conditions for synNotch expression based on dsRed-Express fluorophore expression. Then, we used a synNotch receptor coupled to transcriptional activators to induce the expression of a Cas9 nuclease targeted to a specific genomic DNA site. Our data demonstrate that recognition of various specific antigens via synNotch receptors robustly induced Cas9 expression and resulted in an indel formation frequency of 34.5%-45.5% at the targeted CXCR4 locus. These results provide proof of concept that reporter cells can be designed to recognize a given event and to store transient information permanently in their genomes.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Receptores Notch/metabolismo , Humanos
17.
Gut ; 69(6): 1104-1115, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31767630

RESUMO

OBJECTIVE: Liver fibrosis and cirrhosis resulting from chronic liver injury represent a major healthcare burden worldwide. Growth differentiation factor (GDF) 11 has been recently investigated for its role in rejuvenation of ageing organs, but its role in chronic liver diseases has remained unknown. Here, we investigated the expression and function of GDF11 in liver fibrosis, a common feature of most chronic liver diseases. DESIGN: We analysed the expression of GDF11 in patients with liver fibrosis, in a mouse model of liver fibrosis and in hepatic stellate cells (HSCs) as well as in other liver cell types. The functional relevance of GDF11 in toxin-induced and cholestasis-induced mouse models of liver fibrosis was examined by in vivo modulation of Gdf11 expression using adeno-associated virus (AAV) vectors. The effect of GDF11 on leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5)+ liver progenitor cells was studied in mouse and human liver organoid culture. Furthermore, in vivo depletion of LGR5+ cells was induced by injecting AAV vectors expressing diptheria toxin A under the transcriptional control of Lgr5 promoter. RESULTS: We showed that the expression of GDF11 is upregulated in patients with liver fibrosis and in experimentally induced murine liver fibrosis models. Furthermore, we found that therapeutic application of GDF11 mounts a protective response against fibrosis by increasing the number of LGR5+ progenitor cells in the liver. CONCLUSION: Collectively, our findings uncover a protective role of GDF11 during liver fibrosis and suggest a potential application of GDF11 for the treatment of chronic liver disease.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Imunofluorescência , Fluxo Gênico , Humanos , Hibridização In Situ , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima
18.
Cells ; 8(12)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817235

RESUMO

For the production and bio-banking of differentiated derivatives from human pluripotent stem cells (hPSCs) in large quantities for drug screening and cellular therapies, well-defined and robust procedures for differentiation and cryopreservation are required. Definitive endoderm (DE) gives rise to respiratory and digestive epithelium, as well as thyroid, thymus, liver, and pancreas. Here, we present a scalable, universal process for the generation of DE from human-induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs). Optimal control during the differentiation process was attained in chemically-defined and xeno-free suspension culture, and high flexibility of the workflow was achieved by the introduction of an efficient cryopreservation step at the end of DE differentiation. DE aggregates were capable of differentiating into hepatic-like, pancreatic, intestinal, and lung progenitor cells. Scale-up of the differentiation process using stirred-tank bioreactors enabled production of large quantities of DE aggregates. This process provides a useful advance for versatile applications of DE lineages, in particular for cell therapies and drug screening.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Diferenciação Celular , Linhagem da Célula , Endoderma/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Linhagem Celular , Criopreservação/métodos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
19.
Sci Rep ; 9(1): 7486, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097772

RESUMO

Certain point-mutations in the human SERPINA1-gene can cause severe α1-antitrypsin-deficiency (A1AT-D). Affected individuals can suffer from loss-of-function lung-disease and from gain-of-function liver-disease phenotypes. However, age of onset and severity of clinical appearance is heterogeneous amongst carriers, suggesting involvement of additional genetic and environmental factors. The generation of authentic A1AT-D mouse-models has been hampered by the complexity of the mouse Serpina1-gene locus and a model with concurrent lung and liver-disease is still missing. Here, we investigate point-mutations in the mouse Serpina1a antitrypsin-orthologue, which are homolog-equivalent to ones known to cause severe A1AT-D in human. We combine in silico and in vitro methods and we find that analyzed mutations do introduce potential disease-causing properties into Serpina1a. Finally, we show that introduction of the King's-mutation causes inactivation of neutrophil elastase inhibitory-function in both, mouse and human antitrypsin, while the mouse Z-mutant retains activity. This work paves the path to generation of better A1AT-D mouse-models.


Assuntos
Mutação com Perda de Função , Simulação de Dinâmica Molecular , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/química , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Domínios Proteicos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
20.
Hum Mol Genet ; 28(17): 2835-2850, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108504

RESUMO

The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by a profound loss of motor neurons (MNs). Until now only riluzole minimally extends life expectancy in ALS, presumably by inhibiting glutamatergic neurotransmission and calcium overload of MNs. Therefore, the aim of this study was to investigate the glutamate receptor properties and key aspects of intracellular calcium dynamics in induced pluripotent stem cell (iPSC)-derived MNs from ALS patients with C9orf72 (n = 4 cell lines), fused in sarcoma (FUS) (n = 9), superoxide dismutase 1 (SOD1) (n = 3) or transactive response DNA-binding protein 43 (TDP43) (n = 3) mutations as well as healthy (n = 7 cell lines) and isogenic controls (n = 3). Using calcium imaging, we most frequently observed spontaneous transients in mutant C9orf72 MNs. Basal intracellular calcium levels and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced signal amplitudes were elevated in mutant TDP43 MNs. Besides, a majority of mutant TDP43 MNs responded to 3.5-dihydroxyphenylglycine as metabotropic glutamate receptor agonist. Quantitative real-time PCR demonstrated significantly increased expression levels of AMPA and kainate receptors in mutant FUS cells compared to healthy and isogenic controls. Furthermore, the expression of kainate receptors and voltage gated calcium channels in mutant C9orf72 MNs as well as metabotropic glutamate receptors in mutant SOD1 cells was markedly elevated compared to controls. Our data of iPSC-derived MNs from familial ALS patients revealed several mutation-specific alterations in glutamate receptor properties and calcium dynamics that could play a role in ALS pathogenesis and may lead to future translational strategies with individual stratification of neuroprotective ALS treatments.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação , Receptores de Glutamato/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico , Biomarcadores , Proteína C9orf72/genética , Sinalização do Cálcio , Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...