Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 4(11): 1575-1591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783803

RESUMO

Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.


Assuntos
Bivalves , Cardiidae , Leucemia , Neoplasias , Animais , Humanos , Cardiidae/genética , Evolução Clonal
2.
Dis Aquat Organ ; 156: 7-13, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823560

RESUMO

A huge, unprecedented mortality of cockle Cerastoderma edule caused by the protist Marteilia cochillia, which had never before been detected in Galicia (NW Spain), brought on a cockle fishery collapse in the Ría de Arousa (Galicia) in 2012. Since then, the disease dynamic pattern in the shellfish bed of Lombos do Ulla (at the inner area of that ria) involved an overwhelming annual wave of infections and subsequent cockle mass mortality that caused the near extinction of every cohort recruited to that bed. However, a pattern shift was detected among wild cohorts recruiting since 2016, with progressive declines of marteiliosis prevalence and increments in cockle survival. This suggested 2 non-exclusive hypotheses: increasing marteiliosis resistance through natural selection, and reduced abundance and/or virulence of the parasite. A field experiment was performed to assess these hypotheses by comparing marteiliosis prevalence and severity, as well as mortality, in cockles that naturally recruited to this bed in 2017 and 2018 with those of naïve cockles collected from a marteiliosis-free area and transplanted into Lombos do Ulla in 2017 and 2018. Marteiliosis prevalence and cumulative cockle mortality quickly reached very high values among the transplanted cockles, demonstrating that the parasite remained present and virulent in the area. Conversely, marteiliosis prevalence and cockle mortality were much lower in the cockles that recruited to Lombos do Ulla, suggesting increased resistance that may have been driven by natural selection. The young age at which cockles start reproduction and the very high mortality caused by marteiliosis may have enhanced natural selection.


Assuntos
Cardiidae , Parasitos , Humanos , Animais , Cardiidae/parasitologia , Espanha/epidemiologia , Pesqueiros
3.
Heredity (Edinb) ; 131(4): 292-305, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596415

RESUMO

Knowledge of genetic structure at the finest level is essential for the conservation of genetic resources. Despite no visible barriers limiting gene flow, significant genetic structure has been shown in marine species. The common cockle (Cerastoderma edule) is a bivalve of great commercial and ecological value inhabiting the Northeast Atlantic Ocean. Previous population genomics studies demonstrated significant structure both across the Northeast Atlantic, but also within small geographic areas, highlighting the need to investigate fine-scale structuring. Here, we analysed two geographic areas that could represent opposite models of structure for the species: (1) the SW British Isles region, highly fragmented due to biogeographic barriers, and (2) Galicia (NW Spain), a putative homogeneous region. A total of 9250 SNPs genotyped by 2b-RAD on 599 individuals from 22 natural beds were used for the analysis. The entire SNP dataset mostly confirmed previous observations related to genetic diversity and differentiation; however, neutral and divergent SNP outlier datasets enabled disentangling physical barriers from abiotic environmental factors structuring both regions. While Galicia showed a homogeneous structure, the SW British Isles region was split into four reliable genetic regions related to oceanographic features and abiotic factors, such as sea surface salinity and temperature. The information gathered supports specific management policies of cockle resources in SW British and Galician regions also considering their particular socio-economic characteristics; further, these new data will be added to those recently reported in the Northeast Atlantic to define sustainable management actions across the whole distribution range of the species.


Assuntos
Cardiidae , Humanos , Animais , Oceano Atlântico , Espanha , Genótipo , Estruturas Genéticas
4.
J Invertebr Pathol ; 192: 107786, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700790

RESUMO

Diseases of bivalve molluscs caused by paramyxid parasites of the genus Marteilia have been linked to mass mortalities and the collapse of commercially important shellfish populations. Until recently, no Marteilia spp. have been detected in common cockle (Cerastoderma edule) populations in the British Isles. Molecular screening of cockles from ten sites on the Welsh coast indicates that a Marteilia parasite is widespread in Welsh C. edule populations, including major fisheries. Phylogenetic analysis of ribosomal DNA (rDNA) gene sequences from this parasite indicates that it is a closely related but different species to Marteilia cochillia, a parasite linked to mass mortality of C. edule fisheries in Spain, and that both are related to Marteilia octospora, for which we provide new rDNA sequence data. Preliminary light and transmission electron microscope (TEM) observations support this conclusion, indicating that the parasite from Wales is located primarily within areas of inflammation in the gills and the connective tissue of the digestive gland, whereas M. cochillia is found mainly within the epithelium of the digestive gland. The impact of infection by the new species, here described as Marteilia cocosarum n. sp., upon Welsh fisheries is currently unknown.


Assuntos
Bivalves , Cardiidae , Parasitos , Animais , Bivalves/parasitologia , Cardiidae/parasitologia , DNA Ribossômico , Pesqueiros , Filogenia , País de Gales
5.
Front Immunol ; 13: 826255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464425

RESUMO

Bivalve molluscs stand out for their ecological success and their key role in the functioning of aquatic ecosystems, while also constituting a very valuable commercial resource. Both ecological success and production of bivalves depend on their effective immune defence function, in which haemocytes play a central role acting as both the undertaker of the cellular immunity and supplier of the humoral immunity. Bivalves have different types of haemocytes, which perform different functions. Hence, identification of cell subpopulations and their functional characterisation in immune responses is essential to fully understand the immune system in bivalves. Nowadays, there is not a unified nomenclature that applies to all bivalves. Characterisation of bivalve haemocyte subpopulations is often combined with 1) other multiple parameter assays to determine differences between cell types in immune-related physiological activities, such as phagocytosis, oxidative stress and apoptosis; and 2) immune response to different stressors such as pathogens, temperature, acidification and pollution. This review summarises the major and most recent findings in classification and functional characterisation of the main haemocyte types of bivalve molluscs.


Assuntos
Bivalves , Ecossistema , Animais , Hemócitos , Fagocitose , Temperatura
6.
Fish Shellfish Immunol ; 119: 678-691, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34748932

RESUMO

Recovery of wild populations of the European flat oyster Ostrea edulis is important for ecosystem health and conservation of this species, because native oyster populations have dramatically declined or disappeared in most European waters. Diseases have contributed to oyster decline and are important constrains for oyster recovery. Understanding oyster immune system should contribute to design effective strategies to fight oyster diseases. Haemocytes play a pivotal role in mollusc immune responses protecting from infection. Two main types of haemocytes, granulocytes and hyalinocytes, are distinguished in O. edulis. A study aiming to explore differential functions between both haemocyte types and, thus, to enrich the knowledge of Ostrea edulis immune system, was performed by comparing the proteome of the two haemolymph cell types, using a shotgun approach through liquid chromatography (LC) coupled to mass spectrometry (MS). Cells from oyster haemolymph were differentially separated by Percoll density gradient centrifugation. Shotgun LC-MS/MS performance allowed the identification of 145 proteins in hyalinocytes and 138 in the proteome of granulocytes. After a comparative analysis, 55 proteins with main roles in defence were identified, from which 28 were representative of granulocytes and 27 of hyalinocytes, plus 11 proteins shared by both cell types. Different proteins involved in signal transduction, apoptosis, oxidative response, processes related with the cytoskeleton and structure, recognition and wound healing were identified as representatives of each haemocyte type. Important signalling pathways in the immune response such as MAPK, Ras and NF-κß seemed to be more relevant for granulocytes, while the Wnt signalling pathway, particularly relevant for wound healing, more relevant in hyalinocytes. The differences in proteins involved in recognition and in cytoskeleton and structure suggest differential specialisation in processes of phagocytosis and internalisation of pathogens between haemocyte types. Apoptosis seemed more active in granulocytes. The differences in proteins involved in oxidative response also suggest different redox processes in each cell type.


Assuntos
Ostrea , Proteoma , Animais , Cromatografia Líquida , Ecossistema , Granulócitos , Hemócitos , Espectrometria de Massas em Tandem
7.
Fish Shellfish Immunol ; 100: 456-466, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32205190

RESUMO

Haemocytes play a dominant role in shellfish immunity, being considered the main defence effector cells in molluscs. These cells are known to be responsible for many functions, including chemotaxis, cellular recognition, attachment, aggregation, shell repair and nutrient transport and digestion. There are two basic cell types of bivalve haemocytes morphologically distinguishable, hyalinocytes and granulocytes; however, functional differences and specific abilities are poorly understood: granulocytes are believed to be more efficient in killing microorganisms, while hyalinocytes are thought to be more specialised in clotting and wound healing. A proteomic approach was implemented to find qualitative differences in the protein profile between granulocytes and hyalinocytes of the European flat oyster, Ostrea edulis, as a way to evaluate functional differences. Oyster haemolymph cells were differentially separated by Percoll® density gradient centrifugation. Granulocyte and hyalinocyte proteins were separated by 2D-PAGE and their protein profiles were analysed and compared with PD Quest software; the protein spots exclusive for each haemocyte type were excised from gels and analysed by MALDI-TOF/TOF with a combination of mass spectrometry (MS) and MS/MS for sequencing and protein identification. A total of 34 proteins were identified, 20 unique to granulocytes and 14 to hyalinocytes. The results suggested differences between the haemocyte types in signal transduction, apoptosis, oxidation reduction processes, cytoskeleton, phagocytosis and pathogen recognition. These results contribute to identify differential roles of each haemocyte type and to better understand the oyster immunity mechanisms, which should help to fight oyster diseases.


Assuntos
Granulócitos/imunologia , Hemócitos/imunologia , Ostrea/citologia , Ostrea/imunologia , Proteínas/análise , Animais , Eletroforese em Gel Bidimensional , Citometria de Fluxo , Hemócitos/classificação , Hemolinfa/citologia , Hemolinfa/imunologia , Imunidade Inata , Proteínas/imunologia , Proteoma , Espectrometria de Massas em Tandem
8.
J Invertebr Pathol ; 172: 107349, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32119954

RESUMO

Uninucleate and binucleate cells and multinucleate plasmodia of a haplosporidan-like protist associated with heavy haemocytic infiltration were observed in histological sections of cockles, Cerastoderma edule, from the Ría de Noia (Galicia, NW Spain) in the course of a cockle health surveillance programme. Molecular assays provided identification of this protist as Minchinia tapetis, which we thus record from a new host. Prevalence of M. tapetis as high as 93% was recorded but infection intensity was low to moderate, never heavy, and abnormally high cockle mortality was not observed in the ria by shellfishers. A significant positive correlation was found between M. tapetis prevalence and sea water temperature. Sea water temperature increase associated with climate change might contribute to increase the prevalence of this infection in cockles and, as a consequence, this parasite may be considered a threat for cockle production.


Assuntos
Cardiidae/parasitologia , Haplosporídios/fisiologia , Animais , Haplosporídios/isolamento & purificação , Hemócitos/parasitologia , Interações Hospedeiro-Parasita , Estações do Ano , Espanha , Fatores de Tempo
9.
Int J Parasitol ; 50(3): 195-208, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32087247

RESUMO

The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest global production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum-P. olseni interactions, we analysed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid understanding the response and interaction between R. philippinarum and P. olseni, and will contribute to developing effective control strategies for this threatening parasitosis.


Assuntos
Alveolados , Bivalves/parasitologia , Alveolados/genética , Alveolados/metabolismo , Animais , Bivalves/genética , Bivalves/metabolismo , Células Sanguíneas/metabolismo , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Técnicas In Vitro/métodos , Parasitos/genética , Parasitos/metabolismo , Frutos do Mar/parasitologia , Transcriptoma , Trofozoítos/genética , Trofozoítos/metabolismo
10.
Genes (Basel) ; 10(10)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569787

RESUMO

Cockles are highly appreciated mollusks and provide important services in coastal areas. The two European species, edible (Cerastodermaedule) and lagoon (Cerastodermaglaucum) cockles, are not easily distinguishable, especially when young. Interestingly, the species show different resistance to Marteilia cochillia, the parasite responsible for marteiliosis outbreaks, which is devastating cockle production in some areas. C.edule is severely affected by the parasite, while C. glaucum seems to be resistant, although underlying reasons are still unknown. Hybrids between both species might be interesting to introgress allelic variants responsible for tolerance, either naturally or through artificial selection, from lagoon into edible cockle. Here, we used 2b restriction site-associated DNA sequencing (2b-RAD) to identify single nucleotide polymorphisms (SNP) diagnostic for cockle discrimination (fixed for alternative allelic variants). Among the nine diagnostic SNPs selected, seven were validated using a SNaPshot assay in samples covering most of the distribution range of both species. The validated SNPs were used to check cockles that were suggested to be hybrids by a claimed diagnostic tool based on the internal transcribed spacers of the ribosomal RNA. Although these were shown to be false positives, we cannot rule out the fact that hybrids can occur and be viable. The SNP tool here developed will be valuable for their identification and management.


Assuntos
Cardiidae/genética , Polimorfismo de Nucleotídeo Único , Animais , Cardiidae/classificação , Cardiidae/parasitologia , Código de Barras de DNA Taxonômico/normas , Resistência à Doença/genética , Hibridização Genética , RNA Ribossômico/genética , Rhizaria/patogenicidade
11.
Evol Appl ; 12(9): 1781-1796, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31548857

RESUMO

The European flat oyster (Ostrea edulis) is a highly appreciated mollusk with an important aquaculture production throughout the 20th century, in addition to playing an important role on coastal ecosystems. Overexploitation of natural beds, habitat degradation, introduction of non-native species, and epidemic outbreaks have severely affected this important resource, particularly, the protozoan parasite Bonamia ostreae, which is the main concern affecting its production and conservation. In order to identify genomic regions and markers potentially associated with bonamiosis resistance, six oyster beds distributed throughout the European Atlantic coast were sampled. Three of them have been exposed to this parasite since the early 1980s and showed some degree of innate resistance (long-term affected group, LTA), while the other three were free of B. ostreae at least until sampling date (naïve group, NV). A total of 14,065 SNPs were analyzed, including 37 markers from candidate genes and 14,028 from a medium-density SNP array. Gene diversity was similar between LTA and NV groups suggesting no genetic erosion due to long-term exposure to the parasite, and three population clusters were detected using the whole dataset. Tests for divergent selection between NV and LTA groups detected the presence of a very consistent set of 22 markers, located within a putative single genomic region, which suggests the presence of a major quantitative trait locus associated with B. ostreae resistance. Moreover, 324 outlier loci associated with factors other than bonamiosis were identified allowing fully discrimination of all the oyster beds. A practical tool which included the 84 highest discriminative markers for tracing O. edulis populations was developed and tested with empirical data. Results reported herein could assist the production of stocks with improved resistance to bonamiosis and facilitate the management of oyster beds for recovery production and ecosystem services provided by this species.

12.
Dis Aquat Organ ; 128(2): 127-145, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29733027

RESUMO

European flat oyster Ostrea edulis populations have suffered extensive mortalities caused by bonamiosis. The protozoan parasite Bonamia ostreae is largely responsible for this disease in Europe, while its congener B. exitiosa has been detected more recently in various European countries. Both of these intracellular parasites are able to survive and proliferate within haemocytes, the main cellular effectors of the immune system in molluscs. Two-dimensional electrophoresis was used to compare the haemolymph protein profile between Bonamia spp.-infected and non-infected oysters within 3 different stocks, a Galician stock of oysters selected for resistance against bonamiosis, a non-selected Galician stock and a selected Irish stock. Thirty-four proteins with a presumably relevant role in the oyster-Bonamia spp. interaction were identified; they were involved in major metabolic pathways, such as energy production, respiratory chain, oxidative stress, signal transduction, transcription, translation, protein degradation and cell defence. Furthermore, the haemolymph proteomic profiles of the non-infected oysters of the 2 Galician stocks were compared. As a result, 7 proteins representative of the non-infected Galician oysters selected for resistance against bonamiosis were identified; these 7 proteins could be considered as candidate markers of resistance to bonamiosis, which should be further assessed.


Assuntos
Haplosporídios/fisiologia , Hemolinfa/fisiologia , Ostrea/metabolismo , Ostrea/parasitologia , Animais , Regulação da Expressão Gênica , Hemócitos/metabolismo , Interações Hospedeiro-Parasita , Proteômica
13.
Fish Shellfish Immunol ; 72: 611-621, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29162545

RESUMO

The production of Manila clam (Ruditapes philippinarum) is seriously threatened by the protistan parasite Perkinsus olseni. We characterized and compared gene expression of Manila clam haemocytes in response to P. olseni in a time-course (10 h, 24 h, 8 d) controlled laboratory challenge (LC), representing the first step of infection, and in a more complex infection in the wild (WI), using a validated oligo-microarray containing 11,232 transcripts, mostly annotated. Several immune-genes involved in NIK/NF-kappaB signalling, Toll-like receptor signalling and apoptosis were activated at LC-10 h. However, down-regulation of genes encoding lysozyme, histones, cathepsins and heat shock proteins indicated signals of immunodepression, which persisted at LC-24 h, when only down-regulated genes were detected. A rebound of haemocyte activity occurred at LC-8 d as shown by up-regulation of genes involved in cytoskeleton organization and cell survival. The WI study showed a more complex picture, and several immune-relevant processes including cytoskeleton organization, cell survival, apoptosis, encapsulation, cell redox- and lipid-homeostasis were activated, illustrating the main mechanism of host response. Our results provide useful information, including potential biomarkers, to develop strategies for controlling Manila clam perkinsosis.


Assuntos
Alveolados/fisiologia , Bivalves/genética , Bivalves/imunologia , Hemócitos/imunologia , Imunidade Inata/genética , Transcriptoma/imunologia , Animais , Apoptose/genética , Hemócitos/parasitologia , Interações Hospedeiro-Parasita/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética
14.
Dis Aquat Organ ; 122(2): 137-152, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000604

RESUMO

A histopathological survey revealed parasites and pathological conditions affecting lagoon cockles Cerastoderma glaucum along the Galician coast; serious pathological threats were not detected because the potentially pathogenic conditions (infections with a Marteilia-like parasite and bucephalid sporocysts, disseminated neoplasia and a condition involving large foci of heavy haemocytic reaction) were rare, while more prevalent parasites had negligible or limited pathogeny. Considering that C. edule and C. glaucum are sympatric in some Galician rias, it is remarkable that C. glaucum was not seriously affected by Marteilia cochillia while C. edule suffered an intense outbreak of this parasite associated with massive mortality. Comparison of the digestive gland between cockle species showed co-occurrence of digestive tubules in different phases, with abundant disintegrated tubules, in the case of C. glaucum, while C. edule showed synchronicity and absence of fully disintegrated tubules; these differences could influence their susceptibility to M. cochillia because the main location of this parasite in common cockles is the epithelia of the digestive gland. Moreover, the observation of histological sections through the digestive gland easily allows differentiating the 2 cockle species.


Assuntos
Bactérias/classificação , Cardiidae/microbiologia , Cardiidae/parasitologia , Eucariotos/fisiologia , Fungos/fisiologia , Animais , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Espanha
15.
Fish Shellfish Immunol ; 59: 331-344, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27815201

RESUMO

The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in response to B. ostreae through massively sequencing and has aided to improve our knowledge of the immune mechanisms of flat oyster. The validated oligo-microarray and the establishment of a reference transcriptome will be useful for large-scale gene expression studies in this species.


Assuntos
Bases de Dados Genéticas , Genoma , Haplosporídios/imunologia , Imunidade Inata , Análise de Sequência com Séries de Oligonucleotídeos , Ostrea/genética , Ostrea/parasitologia , Animais , Etiquetas de Sequências Expressas , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/parasitologia , Ostrea/imunologia , Análise de Sequência de DNA , Análise de Sequência de RNA , Transcriptoma
16.
J Invertebr Pathol ; 135: 22-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26820448

RESUMO

The protistan parasite Perkinsus olseni is a deadly causative agent of perkinsosis, a molluscan disease affecting Manila clam (Ruditapes philippinarum), having a significant impact on world mollusc production. Deciphering the underlying molecular mechanisms in R. philippinarum-P. olseni interaction is crucial for controlling this parasitosis. The present study investigated the transcriptional expression in the parasite trophozoite using RNA-seq. Control and treatment (in vitro challenged with Manila clam-plasma) P. olseni trophozoite RNA were extracted and sequenced on the Illumina HiSeq 2000 instrument using a 100-bp paired-end sequencing strategy. Paired reads (64.7 million) were de novo assembled using Trinity, and the resultant transcripts were further clustered using CAP3. The re-constructed P. olseni transcriptome contains 47,590 unique transcripts of which 23,505 were annotated to 9764 unique proteins. A large number of genes were associated with Gene Ontology terms such as stress and immune-response, cell homeostasis, antioxidation, cell communication, signal transduction, signalling and proteolysis. Among annotated transcripts, a preliminary gene expression analysis detected 679 up-regulated and 478 down-regulated genes, linked to virulence factors, anti-oxidants, adhesion and immune-response molecules. Genes of several metabolic pathways such as DOXP/MEP, FAS II or folate biosynthesis, which are potential therapeutic targets, were identified. This study is the first description of the P. olseni transcriptome, and provides a substantial genomic resource for studying the molecular mechanisms of the host-parasite interaction in perkinsosis. In this sense, it is also the first evaluation of the parasite gene expression after challenge with clam extracellular products.


Assuntos
Alveolados/genética , Bivalves/parasitologia , Interações Hospedeiro-Parasita/genética , Transcriptoma/genética , Trofozoítos/fisiologia , Alveolados/patogenicidade , Aminoacil-tRNA Sintetases/metabolismo , Animais , Ácido Fólico/biossíntese , Regulação da Expressão Gênica , Hemolinfa/química , Lipídeos/biossíntese , Lipídeos/genética , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Pirimidinas/biossíntese , RNA/química , RNA/isolamento & purificação , Transdução de Sinais/genética , Fatores de Virulência/fisiologia
17.
J Invertebr Pathol ; 132: 233-241, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26555510

RESUMO

The variability of the protein expression profiling in the extracellular products (ECPs) of in vitro cultured Perkinsus olseni deriving from 4 regions of the Spanish coast was evaluated. The regions involved were the rías of Arousa and Pontevedra (Galicia, NW Spain), Carreras River (Andalusia, SW Spain) and Delta de l'Ebre (Catalonia, NE Spain). P. olseni in vitro clonal cultures were produced from parasite isolates from four clams from each region. Proteins released by the in vitro cultured parasites were isolated and separated by two dimensional electrophoresis (2DE). Qualitative comparison of protein expression profiles in the P. olseni ECPs among clones from all the regions was performed with PD Quest software. Around 130 spots were counted in the gels from ECPs of P. olseni clones from each region, of which 23 spots were shared by clones from all the regions and various spots were representative from clones of one region (appear in every clonal culture from that region but did not in every one of the other regions). A total of 34 spots were excised from the gels and analysed for sequencing. The protein cathepsin B, involved in proteolysis, the signal recognition particle receptor subunit ß, involved in protein transport through membranes, and a protein belonging to N-acetyl transferase superfamily, involved in biosynthesis, were identified in spots shared by P. olseni ECPs from all regions. Pepsin A precursor, involved in proteolysis; heat shock protein (HSP) 60; and phosphoserine aminotransferase, involved in biosynthesis, were representative of P. olseni ECPs from Ría de Arousa, while peroxiredoxin V, involved in oxidation-reduction, was representative of P. olseni ECPs from Ría de Pontevedra. Differences in released proteins suggest different virulence or resistance to host attack between parasites from different locations.


Assuntos
Alveolados/metabolismo , Proteínas de Protozoários/química , Alveolados/isolamento & purificação , Animais , Bivalves/parasitologia , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Proteômica , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/isolamento & purificação , Análise de Sequência de Proteína , Espanha , Espectrometria de Massas em Tandem
18.
Dis Aquat Organ ; 113(3): 245-56, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25850402

RESUMO

We evaluated the proteome variability of in vitro-cultured Perkinsus olseni cells deriving from 4 regions of the Spanish coast: the rías of Arousa and Pontevedra (Galicia, NW Spain), Carreras River in Huelva (Andalusia, SW Spain) and Delta de l'Ebre (Catalonia, NE Spain). P. olseni in vitro clonal cultures were produced starting from parasite isolates from 4 individual clams from each region. Those clonal cultures were used to extract cell proteins, which were separated by 2-dimensional (2D) electrophoresis. Qualitative comparison of P. olseni protein expression profiles among regions was performed with PD Quest software. Around 700 protein spots from parasites derived from each region were considered, from which 141 spots were shared by all the regions. Various spots were found to be exclusive to each region. Higher similarity was found among the proteomes of P. olseni from the Atlantic regions than between those from the Mediterranean and the Atlantic. A total of 54 spots were excised from the gels and sequenced. Nineteen proteins were annotated after searching in databases, 13 being shared by all the regions and 6 exclusive to 1 region. Most of the identified proteins were involved in glycolysis, oxidation/reduction, metabolism and response to stress. No direct evidence of P. olseni variability associated with virulence was found within the protein set analysed, although the differences in metabolic adaptation and stress response could be connected to pathogenicity.


Assuntos
Bivalves/parasitologia , Dinoflagellida/fisiologia , Animais , Oceano Atlântico , Dinoflagellida/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Mar Mediterrâneo , Proteoma/análise , Proteômica/métodos , Espanha , Transcriptoma
19.
J Invertebr Pathol ; 113(1): 96-103, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23439264

RESUMO

The present work aimed to study the infection by Perkinsus sp. in the mangrove oysters Crassostrea rhizophorae from the estuary of the Paraíba River (Paraíba State, Brazil). Perkinsosis was detected by incubation of oyster gill pieces in Ray's fluid thioglycollate medium. The monthly prevalence values were all above 70%, thus infection was not likely to be a transient event. Perkinsus sp. parasites isolated from eight oysters were propagated in vitro. PCR-RFLP analysis of in vitro cultured cells as well as the sequences of the rDNA ITS region allowed the identification of the in vitro propagated parasites as Perkinsus marinus. Phylogenetic analyses using rDNA ITS region sequences strongly supported the Perkinsus sp. from Paraíba in a monophyletic group with P. marinus. Thus, the results confirmed the species affiliation of Paraíba Perkinsus sp. as P. marinus. This is the first report of P. marinus in Brazil and South America and the first report of P. marinus naturally infecting C. rhizophorae.


Assuntos
Alveolados/isolamento & purificação , Ostreidae/parasitologia , Alveolados/genética , Alveolados/fisiologia , Animais , Brasil , Clonagem Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA
20.
J Invertebr Pathol ; 109(3): 274-86, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22245470

RESUMO

Farming of the flat oyster Ostrea edulis in Europe is severely constrained by the protozoan Bonamia ostreae. The introduction of the resistant species Crassostrea gigas has been a relief for the farmers, while the pilot programmes to select O. edulis strains resistant to bonamiosis performed in various countries can be seen as a promising strategy to minimise the effects of bonamiosis. However, the physiological bases of this differential susceptibility remain unknown. A search for an explanation of the intra and interspecific differences in oyster susceptibility to bonamiosis was accomplished by comparing some immune parameters among various O. edulis stocks and C. gigas. On December 2003, naïve and Bonamia-relatively resistant flat oysters from Ireland, Galician flat oysters and Pacific oysters C. gigas were deployed in a Galician area affected by bonamiosis; haemolymph samples were taken in February and May 2004. A new oyster deployment at the same place was carried out on June 2004 and haemolymph sampling was performed on April 2005. On November 2004, new sets of Irish flat oysters and C. gigas were deployed in Ireland and haemolymph sampling was performed in June 2005. Various haemocytic parameters were measured: total and differential haemocyte count, phagocytic ability, respiratory burst (superoxide anion [O(2)(-)] and hydrogen peroxide [H(2)O(2)]) and nitric oxide [NO] production. The comparison of the parameters was carried out at 3 levels: (1) between O. edulis and C. gigas, (2) among O. edulis stocks with different susceptibility to bonamiosis, and (3) between Bonamia-infected and non infected O. edulis. In addition, haemocyte-B. ostreaein vitro encounters were performed to analyse interspecific differences in the haemocytic respiratory burst, using flow cytometry. Significant differences associated with total and differential haemocyte count, and respiratory burst between O. edulis and C. gigas were detected, which could be linked to differences in susceptibility to bonamiosis between both species. Additionally, significant changes in total and differential haemocyte count, and respiratory burst of O. edulis associated with B. ostreae infection were found. However, no consistent difference in any haemocyte parameter between the O. edulis stocks involved in the study was recorded.


Assuntos
Haplosporídios/imunologia , Hemócitos/imunologia , Ostreidae/imunologia , Ostreidae/parasitologia , Infecções Protozoárias em Animais/imunologia , Animais , Suscetibilidade a Doenças , Citometria de Fluxo , Hemócitos/metabolismo , Hemócitos/parasitologia , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/biossíntese , Ostreidae/metabolismo , Fagocitose/imunologia , Infecções Protozoárias em Animais/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...