Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(20): eadn1095, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748790

RESUMO

Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.

2.
ACS Nano ; 18(12): 8557-8570, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38482819

RESUMO

Perovskite light-emitting diodes (LEDs) have emerged as one of the most propitious candidates for next-generation lighting and displays, with the highest external quantum efficiency (EQE) of perovskite LEDs already surpassing the 20% milestone. However, the further development of perovskite LEDs primarily relies on addressing operational instability issues. This Perspective examines some of the key factors that impact the lifetime of perovskite LED devices and some representative reports on recent advancements aimed at improving the lifetime. Our analysis underscores the significance of "nano" strategies in achieving long-term stable perovskite LEDs. Significant efforts must be directed toward proper device encapsulation, perovskite material passivation, interfacial treatment to address environment-induced material instability, bias-induced phase separation, and ion migration issues.

3.
ACS Nano ; 16(5): 8388-8398, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35522604

RESUMO

Color tunability of perovskite light-emitting diodes (PeLEDs) by mixed halide compositional engineering is one of the primary intriguing characteristics of PeLEDs. However, mixed halide PeLEDs are often susceptible to color red-shifting caused by halide ion segregation. In this work, strongly quantum-confined perovskite nanowires (QPNWs) made of CsPbBr3 are grown in nanoporous anodic alumina templates using a closed space sublimation process. By tuning the pore size with atomic layer deposition, QPNWs with a diameter of 6.6 to 2.8 nm have been successfully obtained, with continuous tunable photoluminescence emission color from green (512 nm) to pure blue (467 nm). To better understand the photophysics of QPNWs, carrier dynamics and the benefit of alumina passivation are studied and discussed in detail. Eventually, PeLEDs using various diameters of CsPbBr3 QPNWs are successfully fabricated with cyan color (492 nm) PeLEDs, achieving a record high 7.1% external quantum efficiency (EQE) for all CsPbBr3-based cyan color PeLEDs. Sky blue (481 nm) and pure blue (467 nm) PeLEDs have also been successfully demonstrated, respectively. The work here demonstrates a different approach to achieve quantum-confined one-dimensional perovskite structures and color-tunable PeLEDs, particularly blue PeLEDs.

4.
Nano Lett ; 22(7): 3062-3070, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35312323

RESUMO

Charge collection narrowing (CCN) has been reported to be an efficient strategy to achieve optical filter-free narrowband photodetection (NPD) with metal halide perovskite (MHP) single crystals. However, the necessity of utilizing thick crystals in CCN limits their applications in large scale, flexible, self-driven, and high-performance optoelectronics. Here, for the first time, we fabricate vertically integrated MHP quantum wire/nanowire (QW/NW) array based photodetectors in nanoengineered porous alumina membranes (PAMs) showing self-driven broadband photodetection (BPD) and NPD capability simultaneously. Two cutoff detection edges of the NPDs are located at around 770 and 730 nm, with a full-width at half-maxima (fwhm) of around 40 nm. The optical bandgap difference between the NWs and the QWs, in conjunction with the high carrier recombination rate in QWs, contributes to the intriguing NPD performance. Thanks to the excellent mechanical flexibility of the PAMs, a flexible NPD is demonstrated with respectable performance. Our work here opens a new pathway to design and engineer a nanostructured MHP for novel color selective and full color sensing devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...