Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(6): 2756-2766, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38558915

RESUMO

Water is one of the most reactive and abundant molecules on Earth, and it is thus crucial to understand its reactivity with various material families. One of the big unknown questions is how water in liquid and vapor forms impact the fast-emerging class of metal-organic frameworks (MOFs). Here, we discover that high-pressure water vapor drastically modifies the structure and hence the dynamic, thermodynamic, and mechanical properties of MOF glasses. In detail, we find that an archetypical MOF (ZIF-62) is extremely sensitive to heat treatments performed at 460 °C and water vapor pressures up to ∼110 bar. Both the melting and glass transition temperatures decrease remarkably (by >100 °C), and simultaneously, hardness and Young's modulus increase by up to 100% under very mild treatment conditions (<20 bar of hydrothermal pressure). Structural analyses suggest water to partially coordinate to Zn in the form of a hydroxide ion by replacing a bridging imidazolate-based linker. The work provides insight into the role of hot-compressed water in influencing the structure and properties of MOF glasses and opens a new route for systematically changing the thermodynamics and kinetics of MOF liquids and thus altering the thermal and mechanical properties of the resulting MOF glasses.

2.
Sci China Life Sci ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38523236

RESUMO

Volatile sex pheromones are vital for sexual communication between males and females. Females of the American cockroach, Periplaneta americana, produce and emit two sex pheromone components, periplanone-A (PA) and periplanone-B (PB). Although PB is the major sex attractant and can attract males, how it interacts with PA in regulating sexual behaviors is still unknown. In this study, we found that in male cockroaches, PA counteracted PB attraction. We identified two odorant receptors (ORs), OR53 and OR100, as PB/PA and PA receptors, respectively. OR53 and OR100 were predominantly expressed in the antennae of sexually mature males, and their expression levels were regulated by the sex differentiation pathway and nutrition-responsive signals. Cellular localization of OR53 and OR100 in male antennae further revealed that two types of sensilla coordinate a complex two-pheromone-two-receptor pathway in regulating cockroach sexual behaviors. These findings indicate distinct functions of the two sex pheromone components, identify their receptors and possible regulatory mechanisms underlying the male-specific and age-dependent sexual behaviors, and can guide novel strategies for pest management.

3.
Front Microbiol ; 14: 1161983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275141

RESUMO

Microbial diversity is an important indicator of soil fertility and plays an indispensable role in farmland ecosystem sustainability. The short-term effects of fertilization and rhizobium inoculation on soil microbial diversity and community structure have been explored extensively; however, few studies have evaluated their long-term effects. Here, we applied quantitative polymerase chain reaction (qPCR) and amplicon sequencing to characterize the effect of 10-year fertilizer and rhizobium inoculation on bacterial communities in soybean bulk and rhizosphere soils at the flowering-podding and maturity stages. Four treatments were examined: non-fertilization control (CK), phosphorus and potassium fertilization (PK), nitrogen and PK fertilization (PK + N), and PK fertilization and Bradyrhizobium japonicum 5821 (PK + R). Long-term co-application of rhizobium and PK promoted soybean nodule dry weight by 33.94% compared with PK + N, and increased soybean yield by average of 32.25%, 5.90%, and 5.00% compared with CK, PK, and PK + N, respectively. The pH of PK + R was significantly higher than that of PK and PK + N at the flowering-podding stage. The bacterial abundance at the flowering-podding stage was positively correlated with soybean yield, but not at the maturity stage. The significant different class Gemmatimonadetes, and the genera Gemmatimonas, and Ellin6067 in soil at the flowering-podding stage were negatively correlated with soybean yield. However, the bacterial community at class and genus levels at maturity had no significant effect on soybean yield. The key bacterial communities that determine soybean yield were concentrated in the flowering-podding stage, not at maturity stage. Rhizosphere effect, growth period, and treatment synergies resulted in significant differences in soil bacterial community composition. Soil organic matter (OM), total nitrogen (TN), pH, and available phosphorus (AP) were the main variables affecting bacterial community structure. Overall, long-term co-application of rhizobium and fertilizer not only increased soybean yield, but also altered soil bacterial community structure through niche reconstruction and microbial interaction. Rhizobium inoculation plays key role in reducing nitrogen fertilizer application and promoting sustainable agriculture practices.

4.
Sci Rep ; 13(1): 8234, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217543

RESUMO

Ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) are important intermediate links in the nitrogen cycle. Apart from the AOA and AOB communities in soil, we further investigated co-occurrence patterns and microbial assembly processes subjected to inorganic and organic fertilizer treatments for over 35 years. The amoA copy numbers and AOA and AOB communities were found to be similar for the CK and organic fertilizer treatments. Inorganic fertilizers decreased the AOA gene copy numbers by 0.75-0.93-fold and increased the AOB gene copy numbers by 1.89-3.32-fold compared to those of the CK treatment. The inorganic fertilizer increased Nitrososphaera and Nitrosospira. The predominant bacteria in organic fertilizer was Nitrosomonadales. Furthermore, the inorganic fertilizer increased the complexity of the co-occurrence pattern of AOA and decreased the complexity pattern of AOB comparing with organic fertilizer. Different fertilizer had an insignificant effect on the microbial assembly process of AOA. However, great difference exists in the AOB community assembly process: deterministic process dominated in organic fertilizer treatment and stochastic processes dominated in inorganic fertilizer treatment, respectively. Redundancy analysis indicated that the soil pH, NO3-N, and available phosphorus contents were the main factors affecting the changes in the AOA and AOB communities. Overall, this findings expanded our knowledge concerning AOA and AOB, and ammonia-oxidizing microorganisms were more disturbed by inorganic fertilizers than organic fertilizers.


Assuntos
Amônia , Fertilizantes , Fertilizantes/análise , Microbiologia do Solo , Oxirredução , Filogenia , Bactérias/genética , Archaea/genética , Solo/química , Fertilização
5.
RSC Adv ; 13(17): 11547-11556, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063732

RESUMO

Expanded graphite (EG), an easily-obtained carbon material with the potential of transferring electrons, was utilized successfully in the removal of hazardous hexavalent chromium (Cr(vi)) by environment-friendly oxalic acid (Ox) under UV irradiation. EG with a unique worm-like structure was obtained via a facile microwave treatment. The results showed that the EG + Ox + UV system had optimum performance, removing 99.32% of the Cr(vi) (1 mM) within 60 min at pH = 3, and the kinetic rate constant of Cr(vi) elimination was 7.95 mol L-1 min-1. Three components are potentially involved in the Cr(vi) elimination mechanism by the EG + Ox + UV system: (1) the direct electron transfer (DET) pathway of the EG-Ox-Cr(vi) through the acceleration effect of EG caused the majority removal of Cr(vi) under UV; (2) ·CO2 - generated from Ox photolysis was used to reduce some Cr(vi); (3) ·CO2 - created from Cr(vi)-Ox complexes in the solution through the photoinduced electron transfer (PET) pathway also reduced a little Cr(vi). Overall, the efficient removal of Cr(vi) by the EG + Ox + UV system provided new ideas for future research on Cr(vi) treatment.

6.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982229

RESUMO

Copper Chaperone For Superoxide Dismutase (CCS) genes encode copper chaperone for Superoxide dismutase (SOD) and dramatically affect the activity of SOD through regulating copper delivery from target to SOD. SOD is the effective component of the antioxidant defense system in plant cells to reduce oxidative damage by eliminating Reactive oxygen species (ROS), which are produced during abiotic stress. CCS might play an important role in abiotic stress to eliminate the damage caused by ROS, however, little is known about CCS in soybean in abiotic stress regulation. In this study, 31 GmCCS gene family members were identified from soybean genome. These genes were classified into 4 subfamilies in the phylogenetic tree. Characteristics of 31 GmCCS genes including gene structure, chromosomal location, collinearity, conserved domain, protein motif, cis-elements, and tissue expression profiling were systematically analyzed. RT-qPCR was used to analyze the expression of 31 GmCCS under abiotic stress, and the results showed that 5 GmCCS genes(GmCCS5, GmCCS7, GmCCS8, GmCCS11 and GmCCS24) were significantly induced by some kind of abiotic stress. The functions of these GmCCS genes in abiotic stress were tested using yeast expression system and soybean hairy roots. The results showed that GmCCS7/GmCCS24 participated in drought stress regulation. Soybean hairy roots expressing GmCCS7/GmCCS24 showed improved drought stress tolerance, with increased SOD and other antioxidant enzyme activities. The results of this study provide reference value in-depth study CCS gene family, and important gene resources for the genetic improvement of soybean drought stress tolerance.


Assuntos
Cobre , Glycine max , Cobre/metabolismo , Glycine max/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Filogenia , Superóxido Dismutase/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
7.
Genes (Basel) ; 13(11)2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36360159

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are widely used to improve soil nutrients and promote plant growth and health. However, the growth-promoting effect of a single PGPR on plants is limited. Here, we evaluated the effect of applying rhizobium Bradyrhizobium japonicum 5038 (R5038) and two PGPR strains, Bacillus aryabhattai MB35-5 (BA) and Paenibacillus mucilaginosus 3016 (PM), alone or in different combinations on the soil properties and rhizosphere bacterial community composition of soybean (Glycine max). Additionally, metagenomic sequencing was performed to elucidate the profile of functional genes. Inoculation with compound microbial inoculant containing R5038 and BA (RB) significantly improved nodule nitrogenase activity and increased soil nitrogen content, and urease activity increased the abundance of the nitrogen cycle genes and Betaproteobacteria and Chitinophagia in the rhizosphere. In the treatment of inoculant-containing R5038 and PM (RP), significant changes were found for the abundance of Deltaproteobacteria and Gemmatimonadetes and the phosphorus cycle genes, and soil available phosphorus and phosphatase activity were increased. The RBP inoculants composed of three strains (R5038, BA and PM) significantly affected soybean biomass and the N and P contents of the rhizosphere. Compared with RB and RP, RBP consistently increased soybean nitrogen content, and dry weight. Overall, these results showed that several PGPR with different functions could be combined into composite bacterial inoculants, which coordinately modulate the rhizosphere microbial community structure and improve soybean growth.


Assuntos
Bacillus , Bradyrhizobium , Paenibacillus , Bradyrhizobium/genética , Glycine max , Raízes de Plantas/microbiologia , Solo/química , Paenibacillus/genética , Fósforo , Nitrogênio
8.
Artigo em Inglês | MEDLINE | ID: mdl-35939329

RESUMO

A novel Gram-stain-positive, aerobic, non-motile and rod-shaped bacterium, designated strain NC76-1T, was isolated from soil from a field that had undergone seven years continuous maize cropping from Liuba town located in Zhangye city, Gansu province, PR China. Colonies of strain NC76-1T were white, opaque and circular with a convex shape. The isolate was found to be able to grow at 10-40 °C (optimum 30 °C), pH 6.0 to 12.0 (optimum 7.0-8.0) and with 0-5.0 % (w/v) NaCl (optimum 0%). On the basis of the results of 16S rRNA gene sequence analysis, the strain fell within the clade of the genus Leucobacter, showing the highest sequence similarities with Leucobacter iarius 40T (97.4%), Leucobacter aridicollis CIP 108388T (97.0%), Leucobacter chromiireducens subsp. solipictus TAN 31504T (96.7%) and Leucobacter denitrificans M1T8B10T (96.7%). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between NC76-1T and its closest relatives, L. iarius 40T, L. aridicollis CIP 108388T, L. chromiireducens subsp. solipictus TAN 31504T and L. denitrificans M1T8B10T were ≤73.5 % and 20.3%, respectively. The genomic DNA G+C content of NC76-1T was 61.5 mol%. It presented MK-11 as the predominant menaquinone. The major cellular fatty acids were anteiso-C15 : 0 (49.2 %) and iso-C16 : 0 (35.7%). The major polar lipids were found to be diphosphatidyglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminoglycolipid, five glycolipid and one unidentified lipids. The cell wall amino acids were 2,4-diaminobutyric acid, alanine, glutamic acid, glycine and threonine. On the basis of the phylogenetic, phenotypic and chemotaxonomic characteristics, strain NC76-1T is concluded to represent a novel species within the genus Leucobacter, for which the name Leucobacter chinensis sp. nov. is proposed. The type strain is NC76-1T (GDMCC 1.2286T= JCM 34651T).


Assuntos
Actinomycetales , Zea mays , Actinobacteria , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo
9.
Front Microbiol ; 13: 846359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369449

RESUMO

Rhizosphere microbial communities are vital for plant growth and soil sustainability; however, the composition of rhizobacterial communities, especially the assembly process and co-occurrence pattern among microbiota after the inoculation of some beneficial bacteria, remains considerably unclear. In this study, we investigated the structure of rhizomicrobial communities, their assembly process, and interactions contrasting when Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 are co-inoculated or Bradyrhizobium japonicum 5038 mono-inoculated in black and cinnamon soils of soybean fields. The obtained results indicated that the Chao and Shannon indices were all higher in cinnamon soil than that in black soil. In black soil, the co-inoculation increased the Shannon indices of bacteria comparing with that of the mono-inoculation. In cinnamon soil, the co-inoculation decreased the Chao indices of fungi comparing with that of mono-inoculation. Compared with the mono-inoculation, the interactions of microorganisms of co-inoculation in the co-occurrence pattern increased in complexity, and the nodes and edges of co-inoculation increased by 10.94, 40.18 and 4.82, 16.91% for bacteria and fungi, respectively. The co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 increased the contribution of stochastic processes comparing with Bradyrhizobium japonicum 5038 inoculation in the assembly process of soil microorganisms, and owing to the limitation of species diffusion might restrict the direction of pathogenic microorganism movement. These findings support the feasibility of rebuilding the rhizosphere microbial system via specific microbial strain inoculation and provide evidence that the co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 can be adopted as an excellent compound rhizobia agent resource for the sustainable development of agriculture.

10.
Environ Res ; 205: 112456, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843729

RESUMO

In order to remove high toxic Cr(VI) from the water with low cost and high efficiency, iron-loaded Loofah (Loofah-Fe) was prepared from agriculture waste Loofah and was applied in the Cr(VI) photoreduction remvoal by oxalic acid (Ox). The Cr(VI) removal of Loofah-Fe/Ox/UV system were investigated by the effect of initial Cr(VI) concentration, Ox concentration and Loofah-Fe dosage. The Cr(VI) removal mechanism in Loofah-Fe/Ox/UV system were discussed through the study of initial pH, the change (pH, Ox concentration, Fe(II) and Fe(III) concentration) in solution during the reaction, and the free radicals scavenging test. The role of Loofah-Fe in Loofah-Fe/Ox/UV system was further deduced by the analysis of XPS, EIS and Mott-Schottky. The results showed that Loofah-Fe remarkably enhanced the Cr(VI) photoreduction by Ox, 1 mM of Cr(VI) in aqueous solution was completely removed in 30 min by Loofah-Fe/Ox/UV system at pH = 3.0. The loaded Fe(III) and the contained SiO2 on Loofah-Fe played an important synergized photocatalytic role for Cr(VI) removal in Loofah-Fe/Ox/UV system. Fe(II) and CO2·-, which was continuously generated by photoactive Fe(III)-(C2O4)3 formed between Ox and Fe(III) dissolved from Loofah-Fe, reduced a large amounts of Cr(VI) in solution. The separated electron (e-) and the produced CO2·-, generated from the oxidized Ox by the hole (h+) through photoactive SiO2 on Loofah-Fe, also reduced part of Cr(VI).


Assuntos
Luffa , Poluentes Químicos da Água , Cromo/análise , Ferro/análise , Ácido Oxálico , Oxirredução , Dióxido de Silício , Poluentes Químicos da Água/análise
11.
J Microbiol ; 60(1): 31-46, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826097

RESUMO

As a microsymbiont of soybean, Bradyrhizobium japonicum plays an important role in symbiotic nitrogen fixation and sustainable agriculture. However, the survival of B. japonicum cells under water-deplete (e.g., drought) and water-replete (e.g., flood) conditions is a major concern affecting their nitrogen-fixing ability by establishing the symbiotic relationship with the host. In this study, we isolated a water stress tolerant rhizobium from soybean root nodules and tested its survival under water-deplete conditions. The rhizobium was identified as Bradyrhizobium japonicum and named strain 5038. Interestingly, both plate counting and live/dead fluorescence staining assays indicate that a number of viable but non-culturable cells exist in the culture medium upon the rehydration process which could cause dilution stress. Bradyrhizobium japonicum 5038 cells increased production of exopolysaccharide (EPS) and trehalose when dehydrated, suggesting that protective responses were stimulated. As expected, cells reduced their production upon the subsequent rehydration. To examine differential gene expression of B. japonicum 5038 when exposed to water-deplete and subsequent water-replete conditions, whole-genome transcriptional analysis was performed under 10% relative humidity (RH), and subsequent 100% RH, respectively. A total of 462 differentially expressed genes (DEGs, > 2.0-fold) were identified under the 10% RH condition, while 3,776 genes showed differential expression during the subsequent rehydration (100% RH) process. Genes involved in signal transduction, inorganic ion transport, energy production and metabolisms of carbohydrates, amino acids, and lipids were far more up-regulated than down-regulated in the 10% RH condition. Notably, trehalose biosynthetic genes (otsAB, treS, and treYZ), genes ligD, oprB, and a sigma factor rpoH were significantly induced by 10% RH. Under the subsequent 100% RH condition, genes involved in transcription, translation, cell membrane regulation, replication and repair, and protein processing were highly up-regulated. Interestingly, most of 10%-RH inducible genes displayed rehydration-repressed, except three genes encoding heat shock (Hsp20) proteins. Therefore, this study provides molecular evidence for the switch of gene expression of B. japonicum cells when encountered the opposite water availability from water-deplete to water-replete conditions.


Assuntos
Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Água/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Glycine max/microbiologia , Estresse Fisiológico , Transcrição Gênica , Trealose/metabolismo
12.
Environ Res ; 197: 111070, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33794174

RESUMO

Attapulgite (ATP), a widely existed clay in nature, was firstly and successfully applied to enhance the photoreduction of highly toxic Cr(VI) by oxalic acid (Ox). In ATP + Ox + UV system, batch effects (Ox concentration, initial Cr(VI) concentration, ATP dosage, and reusability of ATP) were investigated. By studying the impact of the initial pH in the solution, the change of pH and Fe species concentration as well as Ox concentration during the reaction, the free radical scavenging test, and the role of ATP, the mechanism of Cr(VI) removal by ATP + Ox + UV system was revealed. The methyl orange (MO) removal of ATP + Ox + UV system was also inspected. The results indicated that ATP showed the obvious enhancement in efficient photoreduction of Cr(VI) by Ox in water. The Fe and Si components in ATP played an important role in Cr(VI) removal by ATP + Ox + UV system: most of Cr(VI) was reduced by Fe(II) and CO2•‒ produced by the Fe(III)-Ox complex from the dissolved Fe component in ATP under UV irradiation. Some of Cr(VI) was reduced by e- and CO2•‒ from the oxidation of Ox by h+ generated by the photocatalyzed SiO2 in ATP. Furthermore, ATP + Ox + UV system also showed excellent MO removal performance, indicating the great potential in practical applications.


Assuntos
Ácido Oxálico , Poluentes Químicos da Água , Cromo , Compostos Férricos , Concentração de Íons de Hidrogênio , Compostos de Magnésio , Oxirredução , Compostos de Silício , Dióxido de Silício , Água , Poluentes Químicos da Água/análise
13.
Chemosphere ; 262: 127806, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32750591

RESUMO

In the view of green and efficient removal of chromium pollution, uniform fiber ball loaded with Fe(OH)3 (UFB-Fe(OH)3), was firstly synthesized and successfully used in the photoreduction of Cr(VI) by oxalate acid (Ox). The Cr(VI) removal in UFB-Fe(OH)3+Ox + UV system was examined by the effect of concentration of Ox, initial Cr(VI) concentration, dosage of UFB-Fe(OH)3 and the reusability of UFB-Fe(OH)3. By studying the impact of the initial pH in the solution, the relationship between the change in pH during the reaction and the removal efficiency of Cr(VI), the effect of coexisting ion (NO3-), and the free radicals quenching tests, the Cr(VI) removal mechanism in UFB-Fe(OH)3+Ox + UV system was further deduced. The results showed that UFB-Fe(OH)3 could greatly enhance the photoreduction of Cr(VI) by Ox, 1.5 mM Cr(VI) was completely removed in 6 min by UFB-Fe(OH)3+Ox + UV system. UFB-Fe(OH)3 had the feasibility of multiple use, it still exhibited the excellent enhancement in Cr(VI) removal by Ox after six cycles of use. The Cr(VI) photoreduction mechanism was consist of three part: i) Ox generate a part of CO2·- under the ultraviolet (UV) to reduce Cr(VI); ii) the Fe(III) dissolved by UFB-Fe(OH)3 formed FeOH2+ in the solution, and then generated very little Fe(II) under UV to remove Cr(VI); iii) the synergistic effect of UFB-Fe(OH)3 and Ox rapidly generated a large number of CO2·- and Fe(II) under UV excitation to reduce Cr(VI).


Assuntos
Cromo/química , Oxalatos/química , Poluentes Químicos da Água/química , Cromo/toxicidade , Ferro , Compostos Orgânicos , Oxirredução , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Front Microbiol ; 11: 539669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013777

RESUMO

Increased inorganic nitrogen (N) and phosphorus (P) additions expected in the future will endanger the biodiversity and stability of agricultural ecosystems. In this context, a long-term fertilizer experiment (37 years) was set up in the black soil of northeast China. We examined interaction impacts of elevated fertilizer and host selection processes on arbuscular mycorrhizal fungi (AMF) communities in wheat rhizosphere soil using the Illumina MiSeq platform. The soil samples were subjected to five fertilization regimes: no fertilizer (CK) and low N (N1), low N plus low P (N1P1), high N (N2), and high N plus high P (N2P2) fertilizer. Long-term fertilization resulted in a significant shift in rhizosphere soil nutrient concentrations. The N fertilization (N1 and N2) did not significantly change rhizosphere AMF species diversity, but N plus P fertilization (N1P1 and N2P2) decreased it compared with CK. Non-metric multidimensional scaling showed that the rhizosphere AMF communities in CK, N1, N2, N1P1 and N2P2 treatments were distinct from each other. The AMF communities were predominantly composed of Glomeraceae, accounting for 30.0-39.1% of the sequences, and the relative abundance of family Glomeraceae was more abundance in fertilized soils, while family Paraglomeraceae were increased in N1 and N2 compared with CK. Analysis shown that AMF diversity was directly affected by soil C:P ratio but indirectly affected by plant under long-term fertilization. Overall, the results indicated that long-term N and P fertilization regimes changed rhizosphere AMF diversity and community composition, and rhizosphere AMF diversity was both affected by soil C:P ratio and plant.

15.
Environ Pollut ; 265(Pt A): 115013, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32593073

RESUMO

Based on the goal of green and effective removal of chromium (Cr(VI)) pollution in water and the idea of treating waste with waste, rice straw (RS) was firstly and successfully used in enhancing the photoreduction of highly toxic Cr(VI) to less toxic Cr(III) by oxalic acid (Ox). Batch experiments (the effect of Ox concentration, initial Cr(VI) concentration, RS dosage and coexisting ions) in Ox + RS + UV photoreduction system were designed to investigate the reaction process. Through studying the effect of initial pH in the solution, the change of pH during the photoreduction process and the free radical scavenging test, the Cr(VI) photoreduction mechanism in Ox + RS + UV system was revealed. The role of RS in Ox + RS + UV system was also deduced by the analysis of FT-IR, XRD, Mott-Schottky and the verification test of the role of -OH and SiO2 on RS. The results showed that RS could significantly synergize Ox to reduce Cr(VI) under UV, 1 mM Cr(VI) in aqueous solution was completely removed in 60 min by Ox + RS + UV system. The Cr(VI) photoreduction mechanism in Ox + RS + UV system consisted of multiple parts: the chemical reduction by Ox(few part), the photoreduction by Ox(some part), and the synergistic photoreduction by RS with Ox(large part). The synergism of RS in Ox + RS + UV system was mainly attributed to its components of SiO2 and -OH of cellulose.


Assuntos
Oryza , Poluentes Químicos da Água/análise , Adsorção , Cromo , Concentração de Íons de Hidrogênio , Ácido Oxálico , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
16.
AMB Express ; 8(1): 57, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29667106

RESUMO

Arbuscular mycorrhizal fungi (AMF) play vital roles in sustaining soil productivity and plant communities. However, adaption and differentiation of AMF in response to commonly used fertilization remain poorly understood. In this study, we showed that the AMF community composition was primarily driven by soil physiochemical changes associated with chronic inorganic and organic fertilization of 37 years in Mollisols. High-throughput sequencing indicated that inorganic fertilizer negatively affected AMF diversity and richness, implying a reduction of mutualism in plant-AMF symbiosis; however, a reverse trend was observed for the application of inorganic fertilizer combined with manure. With regards to AMF community composition, order Glomerales was dominant, but varied significantly among different fertilization treatments. All fertilization treatments decreased family Glomeraceae and genus Funneliformis, while Rhizophagus abundance increased. Plant-growth-promoting-microorganisms of family Claroideoglomeraceae and genus Claroideoglomus were stimulated by manure application, and likely benefited pathogen suppression and phosphorus (P) acquisition. Family Gigasporaceae and genus Gigaspora were negatively correlated with available P in soil. Additionally, redundancy analysis further suggested that soil available P, organic matter and pH were the most important factors in shaping AMF community composition. These results provide strong evidence for niche differentiation of phylogenetically distinct AMF populations under different fertilization regimes. Manure likely contributes to restoration and maintenance of plant-AMF symbiosis, and the balanced fertilization would favor the growth of beneficial AMF communities as one optimized management in support of sustainable agriculture in Mollisols.

17.
Microbiologyopen ; 7(5): e00597, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29573192

RESUMO

How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indicators of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitrogen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal community. The MPK application benefited soil acidification alleviation and organic matter accumulation, as well as soybean yield. Moreover, the community richness indices (Chao1 and ACE) were higher under the MPK regimes, indicating the resilience of microbial diversity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community composition dramatically differed under different fertilization strategies, leading to different soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant-fungal symbioses and increase nitrogen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly increased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contributors to fungal community composition.


Assuntos
Agricultura/métodos , Fertilizantes , Fungos/classificação , Fungos/isolamento & purificação , Micobioma/efeitos dos fármacos , Microbiologia do Solo , China , DNA Fúngico/química , DNA Fúngico/genética , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real
18.
Sci Rep ; 7(1): 10946, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887528

RESUMO

Nodulation competition is a key factor that limits symbiotic nitrogen fixation between rhizobia and their host legumes. Soybean root exudates (SREs) are thought to act as signals that influence Bradyrhizobium ability to colonize roots and to survive in the rhizosphere, and thus they act as a key determinant of nodulation competitiveness. In order to find the competitiveness-related genes in B. diazoefficiens, the transcriptome of two SREs treated B. diazoefficiens with completely different nodulation abilities (B. diazoefficiens 4534 and B. diazoefficiens 4222) were sequenced and compared. In SREs treated strain 4534 (SREs-4534), 253 unigenes were up-regulated and 204 unigenes were down-regulated. In SREs treated strain 4534 (SREs-4222), the numbers of up- and down-regulated unigenes were 108 and 185, respectively. There were considerable differences between the SREs-4534 and SREs-4222 gene expression profiles. Some differentially expressed genes are associated with a two-component system (i.g., nodW, phyR-σEcfG), bacterial chemotaxis (i.g., cheA, unigene04832), ABC transport proteins (i.g., unigene02212), IAA (indole-3-acetic acid) metabolism (i.g., nthA, nthB), and metabolic fitness (i.g., put.), which may explain the higher nodulation competitiveness of B. diazoefficiens in the rhizosphere. Our results provide a comprehensive transcriptomic resource for SREs treated B. diazoefficiens and will facilitate further studies on competitiveness-related genes in B. diazoefficiens.


Assuntos
Bradyrhizobium/genética , Genes Bacterianos , Nodulação , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/metabolismo , Bradyrhizobium/patogenicidade , Extratos Vegetais/farmacologia , Rizosfera , Glycine max/química , Glycine max/microbiologia , Transcriptoma
19.
Sci Rep ; 7(1): 3267, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607352

RESUMO

Long-term use of inorganic nitrogen (N) fertilization has greatly influenced the bacterial community in black soil of northeast China. It is unclear how N affects the bacterial community in two successive crop seasons in the same field for this soil type. We sampled soils from a long-term fertilizer experimental field in Harbin city with three N gradients. We applied sequencing and quantitative PCR targeting at the 16S rRNA gene to examine shifts in bacterial communities and test consistent shifts and driving-factors bacterial responses to elevated N additions. N addition decreased soil pH and bacterial 16S rDNA copy numbers, and increased soil N and crop yield. N addition consistently decreased bacterial diversity and altered bacterial community composition, by increasing the relative abundance of Proteobacteria, and decreasing that of Acidobacteria and Nitrospirae in both seasons. Consistent changes in the abundant classes and genera, and the structure of the bacterial communities across both seasons were observed. Our results suggest that increases in N inputs had consistent effects on the richness, diversity and composition of soil bacterial communities across the crop seasons in two continuous years, and the N addition and the subsequent edaphic changes were important factors in shaping bacterial community structures.


Assuntos
Bactérias/classificação , Fertilizantes/análise , Nitrogênio/análise , Estações do Ano , Microbiologia do Solo , Solo/química , Bactérias/genética , Biodiversidade , China , Produtos Agrícolas , Metagenoma , Metagenômica/métodos , RNA Ribossômico 16S
20.
J Bacteriol ; 194(10): 2777-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22535950

RESUMO

Paenibacillus mucilaginosus is a ubiquitous functional bacterium in microbial fertilizer. Here we report the complete sequence of P. mucilaginosus 3016. Multiple sets of functional genes have been found in the genome. To the best of our knowledge, this is the first announcement about the complete genome sequence of a P. mucilaginosus strain.


Assuntos
Fertilizantes , Genoma Bacteriano , Paenibacillus/classificação , Paenibacillus/genética , Dados de Sequência Molecular , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...