Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107426, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823637

RESUMO

Skeletal muscle is heterogeneous tissue, composed of fast-twitch fibers primarily relying on glycolysis and slow-twitch fibers primarily relying on oxidative phosphorylation (OXPHOS). The relative expression and balance of glycolysis and oxidative phosphorylation in skeletal muscle are crucial for muscle growth and skeletal muscle metabolism. Here, we employed multi-omics approaches including transcriptomics, proteomics, phosphoproteomics, and metabolomics to unravel the role of circMYLK4, a differentially expressed circRNA in fast and slow-twitch muscle fibers, in muscle fiber metabolism. We discovered that circMYLK4 inhibits glycolysis and promotes mitochondrial oxidative phosphorylation. Mechanistically, circMYLK4 interacts with the voltage-gated calcium channel auxiliary subunit CACNA2D2, leading to the inhibition of Ca2+ release from the sarcoplasmic reticulum. The decrease in cytoplasmic Ca2+ concentration inhibits the expression of key enzymes, PHKB and PHKG1, involved in glycogen breakdown, thereby suppressing glycolysis. On the other hand, the increased fatty acid ß-oxidation enhances the tricarboxylic acid (TCA) cycle and mitochondrial oxidative phosphorylation. In general, circMYLK4 plays an indispensable role in maintaining the metabolic homeostasis of skeletal muscle.

2.
Int J Biol Macromol ; 268(Pt 2): 131547, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641281

RESUMO

Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.


Assuntos
Ácido Eicosapentaenoico , Músculo Esquelético , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Masculino , Camundongos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoglicerato Mutase/metabolismo , Fosfoglicerato Mutase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos
3.
BMC Genomics ; 24(1): 415, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488537

RESUMO

BACKGROUND: Skeletal muscle is the largest tissue in the body, and it affects motion, metabolism and homeostasis. Skeletal muscle development comprises myoblast proliferation, fusion and differentiation to form myotubes, which subsequently form mature muscle fibres. This process is strictly regulated by a series of molecular networks. Increasing evidence has shown that noncoding RNAs, especially microRNAs (miRNAs), play vital roles in regulating skeletal muscle growth. Here, we showed that miR-668-3p is highly expressed in skeletal muscle. METHODS: Proliferating and differentiated C2C12 cells were transfected with miR-668-3p mimics and/or inhibitor, and the mRNA and protein levels of its target gene were evaluated by RT‒qPCR and Western blotting analysis. The targeting of Appl1 by miR-668-3p was confirmed by dual luciferase assay. The interdependence of miR-668-3p and Appl1 was verified by cotransfection of C2C12 cells. RESULTS: Our data reveal that miR-668-3p can inhibit myoblast proliferation and myogenic differentiation. Phosphotyrosine interacting with PH domain and leucine zipper 1 (Appl1) is a target gene of miR-668-3p, and it can promote myoblast proliferation and differentiation by activating the p38 MAPK pathway. Furthermore, the inhibitory effect of miR-668-3p on myoblast cell proliferation and myogenic differentiation could be rescued by Appl1. CONCLUSION: Our results indicate a new mechanism by which the miR-668-3p/Appl1/p38 MAPK pathway regulates skeletal muscle development.


Assuntos
MicroRNAs , Linhagem Celular , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mioblastos , Proliferação de Células/genética , Desenvolvimento Muscular/genética
4.
Front Microbiol ; 13: 810230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369439

RESUMO

This study investigated the effects of Cordyceps militaris (CM) on intestinal barrier function and gut microbiota in a pig model. A total of 160 pigs were randomly allocated to either a control group (fed the basal diet) or a CM group (fed the basal diet supplemented with 300 mg/kg CM). CM improved intestinal morphology and increased the numbers of goblet cells and intraepithelial lymphocytes. CM also elevated the expression of zona occluden-1, claudin-1, mucin-2 and secretory immunoglobulin A. Furthermore, the mucosal levels of pro-inflammatory cytokines were downregulated while the levels of anti-inflammatory cytokines were upregulated in the CM group. Mechanistically, CM downregulated the expression of key proteins of the TLR4/MyD88/NF-κB signaling pathway. Moreover, CM altered the colonic microbial composition and increased the concentrations of acetate and butyrate. In conclusion, CM can modulate the intestinal barrier function and gut microbiota, which may provide a new strategy for improving intestinal health.

5.
Mol Genet Genomics ; 297(1): 87-99, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34786637

RESUMO

The type of myofiber is related to the quality of meat. The slow oxidized myofiber helps to increase the tenderness and juiciness of muscle. Numerous studies have shown that circRNA plays a key role in skeletal muscle development. However, the role of circRNA in porcine skeletal myofiber types is unclear. In this study, we performed high-throughput RNA sequencing to study the differential expression of circRNA in the longissimus dorsi and the soleus muscle. A total of 40,757 circRNAs were identified, of which 181 were significantly different. Interestingly, some circRNAs were involved in metabolism pathways, AMPK, FoxO, and PI3K-Akt signaling pathways. Besides, we focused on a novel circRNA-circMYLK4. By injecting circMYLK4-AAV into piglets, we found that circMYLK4 significantly increased the mRNA and protein levels of the slow muscle marker genes. In summary, our study laid an essential foundation for further research of circRNA in myofiber type conversion and higher meat quality.


Assuntos
Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , RNA Circular/fisiologia , Suínos , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , RNA Circular/análise , RNA Circular/genética , Suínos/genética , Suínos/crescimento & desenvolvimento
6.
Mol Ther Nucleic Acids ; 22: 722-732, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230469

RESUMO

Skeletal muscle is an important metabolic organ of the body, and impaired skeletal muscle differentiation can result in a wide range of metabolic diseases. It has been shown that microRNAs (miRNAs) play an important role in skeletal muscle differentiation. The aim of this study was to investigate the role of mmu-miR-324-5p in the differentiation of C2C12 myoblasts and lipid droplet deposition in myotubes for future targeted therapies. We found that mmu-miR-324-5p was highly expressed in mouse skeletal muscle. Overexpression of miR-324-5p significantly inhibited C2C12 myoblast differentiation while promoting oleate-induced lipid accumulation and ß-oxidation in C2C12 myoblasts. Conversely, inhibition of mmu-miR-324-5p promoted C2C12 myoblast differentiation and inhibited lipid deposition in myotubes. Mechanistically, mmu-miR-324-5p negatively regulated the expression of long non-coding Dum (lncDum) and peptidase M20 domain containing 1 (Pm20d1) in C2C12 myoblasts. Reduced lncDum expression was associated with a significant decrease in the expression of myogenesis-related genes. Knockdown of mmu-miR-324-5p increased the levels of lncDum and myogenesis-related gene expression. Following oleate-induced lipid deposition in C2C12 myoblasts, overexpression of mmu-miR-324-5p decreased the expression of Pm20d1 while increasing the expression of mitochondrial ß-oxidation and long-chain fatty acid synthesis-related genes. In conclusion, we provide evidence that miR-324-5p inhibits C2C12 myoblast differentiation and promotes intramuscular lipid deposition by targeting lncDum and Pm20d1, respectively.

7.
Front Vet Sci ; 7: 246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656248

RESUMO

This study was conducted to determine the effect of a fermented corn-soybean meal [fermented feed (FF)] on the gene expression of immunity in the blood, the level of secretory immunoglobulin A (sIgA), and mucosa-associated bacterial community in the duodenum and colon of grower-finisher pigs. In this study, crossbred barrows (Duroc × Landrace × Large White) were randomly assigned to either an unfermented corn-soybean diet (Ctrl) (n = 6) or an FF diet (n = 6), and then the following were examined: the expression of immunity using real-time reverse transcription polymerase-chain reaction in the blood, sIgA using enzyme-linked immunosorbent assay (ELISA), and changes in the bacterial community using Illumina Hiseq sequencing in the mucosa of the duodenum and colon. Compared with control pigs fed with a standard diet, the results showed that FF caused upregulation of the mRNA expression of Toll-like receptor 3 (TLR3), TLR4, TLR6, and TLR8 in the blood (P < 0.05). Moreover, sequencing of 16S rRNA genes in duodenal mucosa samples indicated that the FF diet had a lower proportion of Tenericutes (P < 0.05) in the duodenal mucosa-associated microbiota, and FF significantly increased the percentage of Rikenellaceae and Christensenellaceae but decreased the abundance of Lachnospiraceae (P < 0.05) in the colonic mucosa-associated microbiota. The ELISA results showed that FF significantly increased the concentration of sIgA in the colonic mucosa (P < 0.05). More importantly, our correlation analysis indicated that the gene expression of immunity in the blood and the concentration of sIgA was associated with colonic mucosa-associated microbiota. Our data provide new knowledge into the adaptation response of the intestine to fermented feeding in monogastric animals.

8.
Front Microbiol ; 10: 2620, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824447

RESUMO

Fermented corn-soybean meal (fermented feed, FF) is commonly used in swine production, but the effects of FF on gut health remain unclear. In this study, serum immunity, mRNA abundances of antimicrobial peptides (AMPs) and Toll-like receptors (TLR1-9), bacterial abundance in the duodenum and colon, and colonic metabolic phenotypes were determined in crossbred barrows (Duroc × Landrace × Large White) fed FF or normal feed (unfermented feed, UF) (n = 6). When compared to the UF group, the results showed that serum levels of IgG and IgM were significantly increased in FF group pigs (P < 0.05). FF significantly decreased the abundances of Bacteroides and Verrucomicrobia in the duodenum and decreased the abundances of Bacteroides, Proteobacteria, and Verrucomicrobia in the colon while it significantly increased the abundances of Firmicutes and Actinobacteria (P < 0.05). Furthermore, a Spearman's correlation analysis showed that serum immunity and the expression of genes related to gut immunity were associated with bacterial strains at the family level. Moreover, differentially abundant colonic microbiota were associated with colonic metabolites. LC-MS data analyses identified a total of 1,351 metabolites that markedly differed between the UF and FF groups. C5-Branched dibasic acid metabolism was significantly upregulated whereas the purine metabolism was significantly downregulated (P < 0.05) in the colonic digesta of pigs in the FF meal group compared to the UF meal group. Collectively, these results indicated that FF meal could influence serum immunity and the expression of genes related to gut immunity, correlating with the gut microbiota and bacterial metabolites in grower-finisher pigs. This study may provide an alternative strategy for improving the intestinal health of grower-finisher pigs.

9.
Cells ; 8(4)2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022919

RESUMO

Leptin is an important secretory protein that regulates the body's intake and energy consumption, and the functions of the Hh signaling pathway related to white adipocyte browning are controversial. It has been reported that leptin plays a critical role in adipogenesis by regulating the Hh signaling pathway, but whether there is a functional relationship between leptin, the Hh signaling pathway, and adipocyte browning is not clear. In this research, mouse white pre-adipocytes were isolated to explore the influence of the Hh signal pathway and leptin during the process described above. This showed that leptin decreased high fat diet-induced obese mice body weight and inhibited the Hh signaling pathway, which suggested that leptin and the Hh signaling pathway have an important role in obesity. After activation of the Hh signaling pathway, significantly decreased browning fat-relative gene expression levels were recorded, whereas inhibition of the Hh signaling pathway significantly up-regulated the expression of these genes. Similarly, leptin also up-regulated the expression of these genes, and increased mitochondrial DNA content, but decreased the expression of Gli, the key transcription factors of the Hh signaling pathway. In short, the results show that leptin promotes white adipocyte browning through inhibiting the Hh signaling pathway. Overall, these results demonstrate that leptin serves as a potential intervention to decrease obesity by inhibiting the Hh signaling pathway.


Assuntos
Adipócitos/metabolismo , Proteínas Hedgehog/metabolismo , Leptina/metabolismo , Células 3T3-L1 , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Adipogenia/genética , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Dieta Hiperlipídica , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Transdução de Sinais , Fatores de Transcrição/genética
10.
J Cell Biochem ; 119(9): 7610-7620, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29923621

RESUMO

Myoblast proliferation and terminal differentiation are the key steps of myogenesis. MicroRNAs are a class of small noncoding RNAs that play important roles in gene expression regulation. They negatively regulate gene expression by causing messenger RNA translational repression or target messenger RNA degradation. Here, we found that microRNA-423-5p (miR-423-5p) is highly expressed in both slow and fast muscles. Our gain-of-function study indicated that miR-423-5p actually plays a negative role in regulating myoblast proliferation and differentiation. We also found that miR-423-5p is able to inhibit the expression of suppressor of fused homolog to inactivate the expression of the marker genes in myoblast proliferation and differentiation. Taken together, our findings indicated miR-423-5p as a potential inhibitor of myogenesis by targeting suppressor of fused homolog in myoblast, and it also contributes to a better understanding of the microRNAs-target gene regulatory network in different types of porcine muscle types and may benefit the practice of improving the meat quality in animal husbandry.


Assuntos
MicroRNAs/genética , Mioblastos/citologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regiões 3' não Traduzidas , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Desenvolvimento Muscular , Mioblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...