Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Orthop Surg ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741277

RESUMO

OBJECTIVE: The treatment of talar neck and/or body fractures is known to be difficult and challenging, with significant impact on the long-term functional outcome for the patient. The optimal management, including the choice of surgical approaches and implants, are still under constant discussion. The purpose of the study was to investigate the clinical effects of lateral mini-plate combined with medial lag screws for the treatment of complicated central talar fractures. METHODS: The data of eight patients with complex central talus fractures treated between June 2019 and January 2021 were retrospectively analyzed. There were six males and two females, ranging in age from 15 to 66 years, with an average age of 37.4 years. There were three cases on the left and five cases on the right. All fractures were comminuted, including talar neck with talar body fracture in seven cases and talar body comminuted with subluxation of subtalar joint in one case. All patients were treated with the anteromedial combined anterolateral approach, lateral talar mini-plate fixation and medial lag screw fixation. Fracture reduction quality, union time, and complications were recorded, and functional outcomes were evaluated using the American Orthopedic Foot & Ankle Society (AOFAS) scoring system. RESULTS: The time from injury to surgery was 1-6 days, with an average of 3.38 days. The follow-up period was 34-53 months (mean 44.88 months). All fractures healed with a mean healing time of 16.75 weeks (13-23 weeks). Anatomical reduction was observed in six cases and near in two cases. After operation, there was no loosening or breakage of implant, loss of fracture reduction, and irritation of skin and soft tissue by internal fixation. The average AOFAS score was 87.38 (48-100), with excellent five cases, good two cases and poor one case, and the excellent and good rate was 87.5%. Superficial skin necrosis in one surgical incision healed after dressing exchange. No deep infection occurred. One case (1/8, 12.5%) developed avascular necrosis of the talus without collapse. Posttraumatic arthritis was found in four cases (4/8, 50%). CONCLUSION: The utilization of lateral mini-plates in combination with medial screws for treating complex central talar fractures results in satisfactory reduction and stable fixation, mitigating complications associated with poor reduction. However, due to the absence of an anatomical mini-plate, pre-contouring is necessary when applying the lateral plate. This demands a surgeon's thorough familiarity with the anatomical morphology of the talus and proficiency in surgical techniques. Posttraumatic arthritis is the most common complication of complex central talar fractures.

2.
Environ Sci Technol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748554

RESUMO

Carbon-based single-atom catalysts (SACs) have been gradually introduced in heterogeneous catalytic ozonation (HCO), but the interface mechanism of O3 activation on the catalyst surface is still ambiguous, especially the effect of a surface hydroxyl group (M-OH) at metal sites. Herein, we combined theoretical calculations with experimental verifications to comprehensively investigate the O3 activation mechanisms on a series of conventional SAC structures with N-doped nanocarbon substrates (MN4-NCs, where M = Mn, Fe, Co, Ni). The synergetic manipulation effect of the metal atom and M-OH on O3 activation pathways was paid particular attention. O3 tends to directly interact with the metal atom on MnN4-NC, FeN4-NC, and NiN4-NC catalysts, among which MnN4-NC has the best catalytic activity for its relatively lower activation energy barrier of O3 (0.62 eV) and more active surface-adsorbed oxygen species (Oads). On the CoN4-NC catalyst, direct interaction of O3 with the metal site is energetically infeasible, but O3 can be activated to generate Oads or HO2 species from direct or indirect participation of M-OH sites. The experimental results showed that 90.7 and 82.3% of total organic carbon (TOC) was removed within 40 min during catalytic ozonation of p-hydroxybenzoic acid with MnN4-NC and CoN4-NC catalysts, respectively. Phosphate quenching, catalyst characterization, and EPR measurement further supported the theoretical prediction. This contribution provides fundamental insights into the O3 activation mechanism on SACs, and the methods and ideals could be helpful for future studies of environmental catalysis.

3.
Childs Nerv Syst ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530414

RESUMO

PURPOSE: To introduce a method of cranial bone reconstruction for cranial burst fractures and early-stage growing skull fractures, named bone flap binding and transposition. METHODS: Cranial burst fractures, severe head injuries predominantly observed in infants, are characterized by widely diastatic skull fractures coupled with acute extracranial cerebral herniation beneath an intact scalp through ruptured dura mater. These injuries can develop into growing skull fractures. This study included two cases to illustrate the procedure, with a particular focus on the bone steps in managing these conditions. The medical history, clinical presentation, surgical procedures, and postoperative follow-up were retrospectively studied. The details of the surgical procedure were described. RESULTS: The method of bone reconstruction, named bone flap binding and transposition, was applied after the lacerated dural repair. Two bone pieces were combined to eliminate the diastatic bone defect and then fixed by an absorbable cranial fixation clip and bound by sutures. The combined bone flap was repositioned into the bone window, completely covering the area of the original dural laceration. Subsequently, the bone defect was transferred to the area of normal dura. The postoperative courses for the two infants were uneventful. Follow-up CT scans revealed new bone formation at the previous bone defect and no progressive growing skull fracture. The major cranial defects had disappeared, leaving only small residual defects at the corners of the skull bone window, which required further recovery and did not affect the solidity of the skull. CONCLUSION: Bone flap binding and transposition provide a straightforward, cost-effective, and reliable method for cranial bone reconstruction of cranial burst fractures and early-stage growing skull fractures. This method has taken full advantage of the small infant's dura osteogenic potential without the need for artificial or metallic bone repair materials. The effectiveness of the method needs further validation with more cases in the future.

4.
ACS Appl Mater Interfaces ; 16(8): 10267-10276, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363101

RESUMO

Effective separation of cathode materials from the current collector is a critical step in recycling a spent lithium-ion battery (LIB). This typically necessitates the decomposition or dissolution of the organic binder, poly(vinylidene fluoride) (PVDF), to achieve efficient recovery of cathode materials. However, this process requires a high decomposition temperature, typically between 400 and 600 °C, and can lead to side reactions, such as current collector oxidation/brittleness, decomposition of cathode materials, and formation of metal fluorides. In this study, we propose that non-thermal plasma (NTP) treatment can be used to achieve an extremely high separation of cathode materials and aluminum current collector at near room temperature. Instead of relying on PVDF decomposition, which requires high temperatures, PVDF can be deactivated by partially breaking down long molecular chains with appropriate NTP conditions. With a total treatment time of around 2000 s and an environmental temperature of approximately 80 °C, minor side reactions can be avoided. The separation rate can reach up to 95.69%, and high-quality cathode materials can be obtained with only 0.02 wt % aluminum impurity content. This research could potentially offer a new approach toward minimizing recycling steps and reducing energy consumption in the recycling of spent LIBs. It could also be extended to the recovery of a broader range of electronic wastes.

5.
J Environ Manage ; 352: 120016, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38232599

RESUMO

To determine the priority control sources, an approach was proposed to evaluate the source-specific contribution to health risks from inhaling PM2.5-bound heavy metals (PBHMs). A total of 482 daily PM2.5 samples were collected from urban and suburban areas of Beijing, China, between 2018 and 2019. In addition to the PMF-PSCF model, a Pb isotopic IsoSource model was built for more reliable source apportionment. By using the comprehensive indicator of disability-adjusted life years (DALYs), carcinogenic and noncarcinogenic health risks could be compared on a unified scale. The study found that the annual average concentrations of the total PBHMs were significantly higher in suburban areas than in urban areas, with significantly higher concentrations during the heating season than during the nonheating season. Comprehensive dust accounted for the largest contribution to the concentration of PBHMs, while coal combustion contributed the most to the DALYs associated with PBHMs. These results suggest that prioritizing the control of coal combustion could effectively reduce the disease burden associated with PBHMs, leading to notable public health benefits.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Pequim , Poluentes Atmosféricos/análise , Material Particulado/análise , Anos de Vida Ajustados por Deficiência , Monitoramento Ambiental/métodos , China , Estações do Ano , Carvão Mineral/análise , Medição de Risco
6.
Jt Dis Relat Surg ; 35(1): 27-35, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108163

RESUMO

OBJECTIVES: This study aimed to analyze the biomechanics of cannulated screws (CS) with or without a lateral locking plate (LLP) in talar neck fractures through a finite element analysis. PATIENTS AND METHODS: The computed tomography image of the talus from a healthy volunteer (adult male) was used to reconstruct a three-dimensional talar model. The method for fixing talar neck fractures with CS and an LLP was planned using computer-aided design software. Afterward, the three-dimensional models of comminuted talar neck fractures were used to simulate fixation with anteroposterior parallel dual CS, single CS+LLP, and dual CS+LLP. Finally, finite element analysis was carried out to compare the outcomes of dual CS+LLP to those of single CS+LLP and to those of using dual CS alone. The displacement and von Mises stress values of the three groups with different internal fixation were analyzed. RESULTS: For a simple talar neck fracture, the lowest amount of displacement was obtained with CS+LLP (0.407 mm), while dual CS (0.459 mm) showed the highest amount of total displacement; the lowest amount of peak stresses was obtained with CS+LLP (5.38 MPa), while dual CS (8.749 MPa) showed the highest amount of total peak stresses. For a comminuted talar neck fracture, the lowest amount of displacement was obtained with CS+LLP (0.398 mm), while dual CS (0.408 mm) showed the highest amount of total displacement; the lowest amount of peak stresses was obtained with CS+LLP (129.9 MPa), while dual CS (205.9 MPa) showed the highest amount of peak stresses. CONCLUSION: Compared to the other two groups, the dual CS+LLP group had better biomechanics properties in the displacement and stress peak of the talus and implant. Thus, the use of dual CS+LLP fixation is recommended for the surgical treatment of comminuted talar neck fractures.


Assuntos
Fraturas Ósseas , Fraturas Cominutivas , Tálus , Adulto , Masculino , Humanos , Análise de Elementos Finitos , Tálus/diagnóstico por imagem , Tálus/cirurgia , Parafusos Ósseos , Fraturas Ósseas/cirurgia , Fixação Interna de Fraturas/métodos , Fraturas Cominutivas/diagnóstico por imagem , Fraturas Cominutivas/cirurgia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38159780

RESUMO

PURPOSE: Implementing artificial intelligence technologies allows for the accurate prediction of radiation therapy dose distributions, enhancing treatment planning efficiency. However, esophageal cancers present unique challenges because of tumor complexity and diverse prescription types. Additionally, limited data availability hampers the effectiveness of existing artificial intelligence models. This study developed a deep learning model, trained on a diverse data set of esophageal cancer prescriptions, to improve dose prediction accuracy. METHODS AND MATERIALS: We retrospectively collected data from 530 patients with esophageal cancer, including single-target and simultaneous integrated boost prescriptions, for model building. The proposed Asymmetric ResNeSt (AS-NeSt) model features novel 3-dimensional (3D) ResNeSt blocks and an asymmetrical architecture. We constructed a loss function targeting global and local doses and validated the model's performance against existing alternatives. Model-assisted experiments were used to validate its clinical benefits. RESULTS: The AS-NeSt model maintained an absolute prediction error below 5% for each dosimetric metric. The average Dice similarity coefficient for isodose volumes was 0.93. The model achieved an average relative prediction error of 2.02%, statistically lower than Hierarchically Densely Connected U-net (4.17%), DoseNet (2.35%), and Densely Connected Network (3.65%). It also demonstrated significantly fewer parameters and shorter prediction times. Clinically, the AS-NeSt model raised physicians' ability to accurately preassess appropriate treatment methods before planning from 95.24% to 100%, reduced planning time by over 61% for junior dosimetrists and 52% for senior dosimetrists, and decreased both inter- and intra-dosimetrist discrepancies by more than 50%. CONCLUSIONS: The AS-NeSt model, developed with innovative 3D ResNeSt blocks and an asymmetrical encoder-decoder structure, has been validated using clinical esophageal cancer patient data. It accurately predicts 3D dose distributions for various prescriptions, including simultaneous integrated boost, showing potential to improve the management of esophageal cancer treatment in a clinical setting.

8.
Environ Pollut ; 337: 122558, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714401

RESUMO

PM2.5 is the main component of haze, and PM2.5-bound heavy metals (PBHMs) can induce various toxic effects via inhalation. However, comprehensive macroanalyses on large scales are still lacking. In this study, we compiled a substantial dataset consisting of the concentrations of eight PBHMs, including As, Cd, Cr, Cu, Mn, Ni, Pb and Zn, across different cities in China. To improve prediction accuracy, we enhanced the traditional land-use regression (LUR) model by incorporating emission source-related variables and employing the best-fitted machine-learning algorithm, which was applied to predict PBHM concentrations, analyze geographical patterns and assess the health risks associated with metals under different PM2.5 control targets. Our model exhibited excellent performance in predicting the concentrations of PBHMs, with predicted values closely matching measured values. Noncarcinogenic risks exist in 99.4% of the estimated regions, and the carcinogenic risks in all studied regions of the country are within an acceptable range (1 × 10-5-1 × 10-6). In densely populated areas such as Henan, Shandong, and Sichuan, it is imperative to control the concentration of PBHMs to reduce the number of patients with cancer. Controlling PM2.5 effectively decreases both carcinogenic and noncarcinogenic health risks associated with PBHMs, but still exceed acceptable risk level, suggesting that other important emission sources should be given attention.


Assuntos
Monitoramento Ambiental , Metais Pesados , Humanos , Medição de Risco , Metais Pesados/análise , China , Carcinógenos/análise , Algoritmos , Aprendizado de Máquina , Material Particulado/análise
9.
Environ Sci Technol ; 57(38): 14442-14451, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37561117

RESUMO

Massive anions in high saline wastewater are primary factors that restricted the efficiency of pollutant degradation in advanced oxidation processes (AOPs). Herein, we reported the influence laws of different anions at high concentration on the electron-transfer process in the activation of persulfate, and especially, the sulfate anion exhibited the excellent promotion effect. Depending on the ionic charge, polarizability, and size, the anions exerted diverse effects on the dispersed phase and zeta potential of carbonaceous catalysts, which further embodied in the removal of pollutants. Based on the differences of reaction rate constant in water solution and high saline solution, the order was ClO4- < NO3- < Cl- < SO42- < CO32-, obeying the Hofmeister series. The enhancement of the sulfate anion was widely confirmed with different carbonaceous catalysts and pollutants with various structures. It could be attributed to the higher oxidation capacity, the faster interfacial electron transfer, and the better catalyst dispersion in the high sulfate environment. On the other hand, the decrease of zeta potential of the catalyst induced by sulfate reinforced the electrostatic attraction or repulsion with pollutants, which caused the selectivity of the sulfate promotion effect. Overall, this study provides new insights into the mechanism of influence of anions on AOPs, which refreshed the cognition of the role of sulfate on pollutant degradation, and helps guide the treatment design of high salinity wastewater.


Assuntos
Sulfatos , Poluentes Químicos da Água , Sulfatos/química , Águas Residuárias , Ânions , Oxirredução , Poluentes Químicos da Água/química
10.
Environ Sci Technol ; 57(36): 13625-13634, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650769

RESUMO

In this work, we demonstrate for the first time the abatement of sulfamethoxazole (SMX) induced by stabilized ortho-semiquinone radicals (o-SQ•-) in the MnO2-mediated system in the presence of humic acid. To evaluate the performance of different MnO2/mediator systems, 16 mediators are examined for their effects on MnO2 reactions with SMX. The key role of the bidentate Mn(II)-o-SQ• complex and MnO2 surface in stabilizing SQ•- is revealed. To illustrate the formation of the Mn(II)-o-SQ• complex, electron spin resonance, cyclic voltammetry, and mass spectra were used. To demonstrate the presence of o-SQ• on the MnO2 surface, EDTA was used to quench Mn(II)-o-SQ•. The high stability of o-SQ•- on the MnO2 surface is attributed to the higher potential of o-SQ•- (0.9643 V) than the MnO2 surface (0.8598 V) at pH 7.0. The SMX removal rate constant by different stabilized o-SQ• at pH 7.0 ranges from 0.0098 to 0.2252 min-1. The favorable model is the rate constant ln (kobs, 7.0) = 6.002EHOMO(o-Qred) + 33.744(ELUMO(o-Q) - EHOMO(o-Qred)) - 32.800, whose parameters represent the generation and reactivity of o-SQ•, respectively. Moreover, aniline and cystine are competitive substrates for SMX in coupling o-SQ•-. Due to the abundance of humic constituents in aquatic environments, this finding sheds light on the low-oxidant-demand, low-carbon, and highly selective removal of sulfonamide antibiotics.


Assuntos
Substâncias Húmicas , Sulfametoxazol , Manganês , Óxidos , Compostos de Manganês
11.
Cancer Res ; 83(19): 3205-3219, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37409887

RESUMO

The immune system plays a crucial role in the regulation of metastasis. Tumor cells systemically change immune functions to facilitate metastatic progression. Through this study, we deciphered how tumoral galectin-1 (Gal1) expression shapes the systemic immune environment to promote metastasis in head and neck cancer (HNC). In multiple preclinical models of HNC and lung cancer in immunogenic mice, Gal1 fostered the establishment of a premetastatic niche through polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC), which altered the local microenvironment to support metastatic spread. RNA sequencing of MDSCs from premetastatic lungs in these models demonstrated the role of PMN-MDSCs in collagen and extracellular matrix remodeling in the premetastatic compartment. Gal1 promoted MDSC accumulation in the premetastatic niche through the NF-κB signaling axis, triggering enhanced CXCL2-mediated MDSC migration. Mechanistically, Gal1 sustained NF-κB activation in tumor cells by enhancing stimulator of interferon gene (STING) protein stability, leading to prolonged inflammation-driven MDSC expansion. These findings suggest an unexpected protumoral role of STING activation in metastatic progression and establish Gal1 as an endogenous-positive regulator of STING in advanced-stage cancers. SIGNIFICANCE: Galectin-1 increases STING stability in cancer cells that activates NF-κB signaling and CXCL2 expression to promote MDSC trafficking, which stimulates the generation of a premetastatic niche and facilitates metastatic progression.


Assuntos
Neoplasias Pulmonares , Células Supressoras Mieloides , Animais , Camundongos , Galectina 1/genética , Galectina 1/metabolismo , Neoplasias Pulmonares/metabolismo , Células Supressoras Mieloides/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Microambiente Tumoral/fisiologia
12.
Huan Jing Ke Xue ; 44(6): 3488-3499, 2023 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-37309965

RESUMO

Based on the concentration data of seven heavy metal elements[As, Cd, Cu, Pb, Hg, Ni, and Cr(Ⅵ)] in the surface soil of a typical industrial park in northwest China, the characteristics of heavy metal pollution in the industrial park were analyzed, and the ecological risk and pollution were evaluated using the potential ecological risk index and the index of geo-accumulation. The positive matrix factorization (PMF) model and random forest (RF) model were used for quantitative source analysis, and the emission data of sampling enterprises and empirical data of the source emission component spectrum were combined to identify the characteristic elements and determine the emission source category. The results showed that the heavy metals at all sampling points in the park did not exceed the second-class screening value of construction land in the soil pollution risk control standard for construction land (GB 36600-2018). However, compared with the local soil background values, five elements, excluding As and Cr, were enriched in different degrees, presenting slight pollution and moderate ecological risk (RI=250.04). Cd and Hg were the main risk elements of the park. The results of source analysis showed that the five main sources of pollution were fossil fuel combustion and chemical production sources (33.73%, 9.71%, total source contribution rate of PMF and RF, respectively; the same below), natural sources and waste residue landfill (32.40%, 40.80%), traffic emissions (24.49%, 48.08%), coal burning and non-ferrous metal smelting (5.43%, 0.11%), and electroplating and ore smelting (3.95%, 1.30%). The simulation R2 of the total variable of the two models were above 0.96, indicating that the models could predict heavy metals well. However, considering the actual situation of the number of enterprises in the park and roading density, the main pollution sources of soil heavy metals in the park should be industrial sources, and the simulation results of the PMF model were closer to the actual situation in the park.

13.
Small ; 19(42): e2301834, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340579

RESUMO

Understanding the mechanism of the rate-dependent electrochemical performance degradation in cathodes is crucial to developing fast charging/discharging cathodes for Li-ion batteries. Here, taking Li-rich layered oxide Li1.2 Ni0.13 Co0.13 Mn0.54 O2 as the model cathode, the mechanisms of performance degradation at low and high rates are comparatively investigated from two aspects, the transition metal (TM) dissolution and the structure change. Quantitative analyses combining spatial-resolved synchrotron X-ray fluorescence (XRF) imaging, synchrotron X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques reveal that low-rate cycling leads to gradient TM dissolution and severe bulk structure degradation within the individual secondary particles, and especially the latter causes lots of microcracks within secondary particles, and becomes the main reason for the fast capacity and voltage decay. In contrast, high-rate cycling leads to more TM dissolution than low-rate cycling, which concentrates at the particle surface and directly induces the more severe surface structure degradation to the electrochemically inactive rock-salt phase, eventually causing a faster capacity and voltage decay than low-rate cycling. These findings highlight the protection of the surface structure for developing fast charging/discharging cathodes for Li-ion batteries.

14.
Water Res ; 234: 119827, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889089

RESUMO

Chloride ion (Cl-) is one of the most common anions in wastewater and saline wastewater, but its elusive effects on organics degradation are not clear yet in many cases. In this paper, the effect of Cl- on organic compounds degradation is intensively studied in catalytic ozonation of different water matrix. It was found that the effect of Cl- is almost completely reflected by transforming ·OH to reactive chlorine species (RCS), which is simultaneously competitive with organics degradation. The competition between organics and Cl- for ·OH directly determines the ratio of their consumption rate of ·OH, which depends on their concentration and reactivity with ·OH. Especially, the concentration of organics and solution pH may change greatly during organics degradation process, which will correspondingly influence the transformation rate of ·OH to RCS. Therefore, the effect of Cl- on organics degradation is not immutable, and may dynamically change. As the reaction product between Cl- and ·OH, RCS was also expected to affect the degradation of organics. But we found that Cl· had no significant contribution to the degradation of organics in catalytic ozonation, which may due to its reaction with ozone. Catalytic ozonation of a series of benzoic acid (BA) with different substituents in chloride contained wastewater was also investigated, and the results showed that the electron-donating substituents can weaken the inhibition of Cl- on BAs degradation, because they increase the reactivity of organics with ·OH, O3 and RCS.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Cloretos , Água , Poluentes Químicos da Água/química , Oxirredução , Catálise , Ozônio/química
15.
Cancer Res ; 83(6): 861-874, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36652552

RESUMO

Radiotherapy (RT) is one of the primary treatments of head and neck squamous cell carcinoma (HNSCC), which has a high-risk of locoregional failure (LRF). Presently, there is no reliable predictive biomarker of radioresistance in HNSCC. Here, we found that mutations in NFE2L2, which encodes Nrf2, are associated with a significantly higher rate of LRF in patients with oral cavity cancer treated with surgery and adjuvant (chemo)radiotherapy but not in those treated with surgery alone. Somatic mutation of NFE2L2 led to Nrf2 activation and radioresistance in HNSCC cells. Tumors harboring mutant Nrf2E79Q were substantially more radioresistant than tumors with wild-type Nrf2 in immunocompetent mice, whereas the difference was diminished in immunocompromised mice. Nrf2E79Q enhanced radioresistance through increased recruitment of intratumoral polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) and reduction of M1-polarized macrophages. Treatment with the glutaminase inhibitor CB-839 overcame the radioresistance induced by Nrf2E79Q or Nrf2E79K. RT increased expression of PMN-MDSC-attracting chemokines, including CXCL1, CXLC3, and CSF3, in Nrf2E79Q-expressing tumors via the TLR4, which could be reversed by CB-839. This study provides insights into the impact of NFE2L2 mutations on radioresistance and suggests that CB-839 can increase radiosensitivity by switching intratumoral myeloid cells to an antitumor phenotype, supporting clinical testing of CB-839 with RT in HNSCC with NFE2L2 mutations. SIGNIFICANCE: NFE2L2 mutations are predictive biomarkers of radioresistance in head and neck cancer and confer sensitivity to glutaminase inhibitors to overcome radioresistance.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Células Supressoras Mieloides , Animais , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patologia , Glutaminase/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Mutação , Células Supressoras Mieloides/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Tolerância a Radiação/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Humanos
16.
Int J Gynaecol Obstet ; 162(1): 278-286, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36637227

RESUMO

OBJECTIVE: To propose a novel operative strategy involving cervical lifting suture (CLS) in conjunction with the improved Hayman suture (CLS-Hayman) to apply in the cesarean section of pernicious placenta previa (PPP) under noninterventional conditions and evaluate the curative effect of the CLS-Hayman operation by comparing with conventional CLS. METHODS: A retrospective cohort study was conducted on 119 pregnant women diagnosed with PPP, including 50 cases in the CLS-Hayman group and 69 cases in the CLS group. The authors used different statistical methods to compare intraoperative bleeding, 24-h postpartum bleeding, postoperative complication rates, and uterine involution between the two groups under noninterventional conditions. RESULTS: The median intraoperative blood loss was 800 mL in the CLS-Hayman group versus 1000 mL in the CLS group. The amount of 24-h postpartum bleeding in the CLS-Hayman group was lower than that in the CLS group. The complication rates in the two groups were 12% and 27.5%, respectively (P = 0.04). B-ultrasound or magnetic resonance imaging data showed that the uterine involution was better in the CLS-Hayman group. CONCLUSION: The CLS-Hayman suture achieves the desired intraoperative hemostasis and also stands out for its better prevention of postpartum hemorrhage, better prognosis at follow-up, and lower complication rates.


Assuntos
Placenta Acreta , Placenta Prévia , Hemorragia Pós-Parto , Gravidez , Feminino , Humanos , Cesárea/efeitos adversos , Estudos Retrospectivos , Placenta Prévia/cirurgia , Remoção , Hemorragia Pós-Parto/cirurgia , Hemorragia Pós-Parto/etiologia , Suturas/efeitos adversos , Placenta Acreta/cirurgia
17.
Environ Sci Technol ; 56(24): 17753-17762, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445928

RESUMO

Hydroxyl radical-dominated oxidation in catalytic ozonation is, in particular, important in water treatment scenarios for removing organic contaminants, but the mechanism about ozone-based radical oxidation processes is still unclear. Here, we prepared a series of transitional metal (Co, Mn, Ni) single-atom catalysts (SACs) anchored on graphitic carbon nitride to accelerate ozone decomposition and produce highly reactive ·OH for oxidative destruction of a water pollutant, oxalic acid (OA). We experimentally observed that, depending on the metal type, OA oxidation occurred dominantly either in the bulk phase, which was the case for the Mn catalyst, or via a combination of the bulk phase and surface reaction, which was the case for the Co catalyst. We further performed density functional theory simulations and in situ X-ray absorption spectroscopy to propose that the ozone activation pathway differs depending on the oxygen binding energy of metal, primarily due to differential adsorption of O3 onto metal sites and differential coordination configuration of a key intermediate species, *OO, which is collectively responsible for the observed differences in oxidation mechanisms and kinetics.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Radical Hidroxila/química , Oxirredução , Metais , Catálise , Ácido Oxálico/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
18.
World J Clin Cases ; 10(14): 4684-4690, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35663082

RESUMO

BACKGROUND: Maisonneuve fracture is a special type of ankle fracture that consists of proximal fibular fracture, a lesion of the inferior tibiofibular syndesmotic complex (interosseous ligament, anterior inferior tibiofibular ligament and posterior inferior tibiofibular ligament), and injury of the medial structure of the ankle (deltoid ligament tear or medial malleolar fracture). The accepted mechanism of Maisonneuve fracture is pronation external rotation according to the Lauge-Hansen classification. In this paper, we report a rare pattern of Maisonneuve fracture, which has the characteristics of both pronation external rotation ankle fracture and supination adduction ankle fracture. CASE SUMMARY: A 31-year-old female patient accidentally sprained her right ankle while walking 5 d before hospitalization in our hospital. The patient was initially missed in other hospitals and later rediagnosed in our outpatient department. Full-length radiographs of the lower leg revealed proximal fibula fracture, inferior tibiofibular joint separation, and medial malleolar fracture involving the posterior malleolus, which was also revealed on computed tomography scans. Magnetic resonance imaging revealed rupture of the anterior inferior tibiofibular ligament and anterior talofibular ligament. We diagnosed a rare pattern of Maisonneuve fracture with proximal fibular fracture, inferior tibiofibular joint separation, medial malleolar fracture and ruptures of the anterior inferior tibiofibular ligament and anterior talofibular ligament. The patient underwent open reduction and internal fixation in our hospital. A 6-mo postoperative follow-up confirmed a good clinical outcome. CONCLUSION: To our knowledge, this rare pattern of Maisonneuve fracture has not been previously described. The possible mechanism of injury is supination adduction combined with pronation external rotation. Careful analysis of the injury mechanism of Maisonneuve fracture is of great clinical significance and can better guide clinical treatment.

19.
PNAS Nexus ; 1(2): pgac056, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35707206

RESUMO

Adult salivary stem/progenitor cells (SSPC) have an intrinsic property to self-renew in order to maintain tissue architecture and homeostasis. Adult salivary glands have been documented to harbor SSPC, which have been shown to play a vital role in the regeneration of the glandular structures postradiation damage. We have previously demonstrated that activation of aldehyde dehydrogenase 3A1 (ALDH3A1) after radiation reduced aldehyde accumulation in SSPC, leading to less apoptosis and improved salivary function. We subsequently found that sustained pharmacological ALDH3A1 activation is critical to enhance regeneration of murine submandibular gland after radiation damage. Further investigation shows that ALDH3A1 function is crucial for SSPC self-renewal and survival even in the absence of radiation stress. Salivary glands from Aldh3a1 -/- mice have fewer acinar structures than wildtype mice. ALDH3A1 deletion or pharmacological inhibition in SSPC leads to a decrease in mitochondrial DNA copy number, lower expression of mitochondrial specific genes and proteins, structural abnormalities, lower membrane potential, and reduced cellular respiration. Loss or inhibition of ALDH3A1 also elevates ROS levels, depletes glutathione pool, and accumulates ALDH3A1 substrate 4-hydroxynonenal (4-HNE, a lipid peroxidation product), leading to decreased survival of murine SSPC that can be rescued by treatment with 4-HNE specific carbonyl scavengers. Our data indicate that ALDH3A1 activity protects mitochondrial function and is important for the regeneration activity of SSPC. This knowledge will help to guide our translational strategy of applying ALDH3A1 activators in the clinic to prevent radiation-related hyposalivation in head and neck cancer patients.

20.
Environ Sci Technol ; 56(12): 7853-7863, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35615937

RESUMO

N-doped defective nanocarbon (N-DNC) catalysts have been widely studied due to their exceptional catalytic activity in many applications, but the O3 activation mechanism in catalytic ozonation of N-DNCs has yet to be established. In this study, we systematically mapped out the detailed reaction pathways of O3 activation on 10 potential active sites of 8 representative configurations of N-DNCs, including the pyridinic N, pyrrolic N, N on edge, and porphyrinic N, based on the results of density functional theory (DFT) calculations. The DFT results indicate that O3 decomposes into an adsorbed atomic oxygen species (Oads) and an 3O2 on the active sites. The atomic charge and spin population on the Oads species indicate that it may not only act as an initiator for generating reactive oxygen species (ROS) but also directly attack the organics on the pyrrolic N. On the N site and C site of the N4V2 system (quadri-pyridinic N with two vacancies) and the pyridinic N site at edge, O3 could be activated into 1O2 in addition to 3O2. The N4V2 system was predicted to have the best activity among the N-DNCs studied. Based on the DFT results, machine learning models were utilized to correlate the O3 activation activity with the local and global properties of the catalyst surfaces. Among the models, XGBoost performed the best, with the condensed dual descriptor being the most important feature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...