Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706118

RESUMO

Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.

2.
Insect Biochem Mol Biol ; 169: 104125, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38616030

RESUMO

Voltage-dependent anion channel 2 (VDAC2) is an important channel protein that plays a crucial role in the host response to viral infection. The receptor for activated C kinase 1 (RACK1) is also a key host factor involved in viral replication. Our previous research revealed that Bombyx mori VDAC2 (BmVDAC2) and B. mori RACK1 (BmRACK1) may interact with Bombyx mori nucleopolyhedrovirus (BmNPV), though the specific molecular mechanism remains unclear. In this study, the interaction between BmVDAC2 and BmRACK1 in the mitochondria was determined by various methods. We found that BmNPV p35 interacts directly with BmVDAC2 rather than BmRACK1. BmNPV infection significantly reduced the expression of BmVDAC2, and activated the mitochondrial apoptosis pathway. Overexpression of BmVDAC2 in BmN cells inhibited BmNPV-induced cytochrome c (cyto c) release, decrease in mitochondrial membrane potential as well as apoptosis. Additionally, the inhibition of cyto c release by BmVDAC2 requires the involvement of BmRACK1 and protein kinase C. Interestingly, overexpression of p35 inhibited cyto c release during mitochondrial apoptosis in a RACK1 and VDAC2-dependent manner. Even the mutant p35, which loses Caspase inhibitory activity, could still bind to VDAC2 and inhibit cyto c release. In summary, our results indicated that BmNPV p35 interacts with the VDAC2-RACK1 complex to regulate apoptosis by inhibiting cyto c release. These findings confirm the interaction between BmVDAC2 and BmRACK1, the interaction between p35 and the VDAC2-RACK1 complex, and a novel target that BmNPV p35 regulates apoptosis in Bombyx mori via interaction with the BmVDAC2-BmRACK1 complex. The result provide an initial exploration of the function of this interaction in the BmNPV-induced mitochondrial apoptosis pathway.

3.
Insect Mol Biol ; 33(3): 259-269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38335442

RESUMO

The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the Bombyx mori miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene pyridoxal phosphate phosphatase PHOSPHO2 (BmPLPP2) was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets BmPLPP2 and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas BmPLPP2 promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of BmPLPP2 results in a reduction of PLP content, whereas the knockdown of BmPLPP2 leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating BmPLPP2 to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in B. mori-BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.


Assuntos
Bombyx , Regulação para Baixo , MicroRNAs , Nucleopoliedrovírus , Fosfato de Piridoxal , Animais , Bombyx/virologia , Bombyx/genética , Bombyx/metabolismo , Nucleopoliedrovírus/fisiologia , MicroRNAs/metabolismo , MicroRNAs/genética , Fosfato de Piridoxal/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/virologia , Larva/genética , Larva/crescimento & desenvolvimento , Replicação Viral
4.
Insect Sci ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258370

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.

5.
Int J Biol Macromol ; 235: 123834, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36842745

RESUMO

c-Jun N-terminal kinase (JNK) phosphorylation is widely observed during virus infection, modulating various aspects of the virus-host interaction. In our previous research, we have proved that B. mori ferritin heavy-chain homolog (BmFerHCH), an inhibitor of reactive oxygen species (ROS), facilitates B. mori nucleopolyhedrovirus (BmNPV) proliferation. However, one question remains: Which downstream signaling pathways does BmFerHCH regulate by inhibiting ROS? Here, we first determined that silencing BmFerHCH inhibits BmNPV proliferation, and this inhibition depends on ROS. Then, we substantiated that BmNPV infection activates the JNK signaling pathway. Interestingly, the JNK phosphorylation during BmNPV infection is activated by ROS. Further, we found that the enhanced nuclear translocation of phospho-JNK induced by BmNPV infection was dramatically reduced by pretreatment with the antioxidant N-acetylcysteine (NAC), whereas there was more detectable phospho-JNK in the cytoplasm. Next, we investigated how changes in BmFerHCH expression affect JNK phosphorylation. BmFerHCH overexpression suppressed the phosphorylation of JNK and nuclear translocation of phospho-JNK during BmNPV infection, whereas BmFerHCH knockdown facilitated phosphorylation of JNK and nuclear translocation of phospho-JNK. By measuring the viral load, we found the inhibitory effect of BmFerHCH knockdown on BmNPV infection depends on phosphorylated JNK. In addition, the JNK signaling pathway was involved in BmNPV-triggered apoptosis. Hence, we hypothesize that ROS-mediated JNK phosphorylation is involved in the regulation of BmFerHCH on BmNPV proliferation. These results elucidate the molecular mechanisms and signaling pathways of BmFerHCH-mediated response to BmNPV infection.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Fosforilação , Nucleopoliedrovírus/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Apoferritinas/metabolismo , Sistema de Sinalização das MAP Quinases , Proliferação de Células , Bombyx/metabolismo , Proteínas de Insetos/metabolismo
6.
Int J Biol Macromol ; 217: 842-852, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35905762

RESUMO

Ferritin heavy-chain homolog (FerHCH), an iron-binding protein, plays an important role in the host defense against oxidative stress and pathogen infections. In our previous research, Bombyx mori native ferritin had an interaction with B. mori nucleopolyhedrovirus (BmNPV). However, the underlying molecular mechanism of single ferritin homolog responses to BmNPV infection remains unclear. In this study, we found that BmNPV titer and B. mori FerHCH (BmFerHCH) expression were positively correlated with the ferric iron concentration. We performed RNA interference (RNAi) and overexpression experiments to investigate the effects of BmFerHCH on BmNPV proliferation. BmFerHCH knockdown suppressed BmNPV proliferation in vivo and in vitro, whereas BmFerHCH overexpression facilitated BmNPV proliferation. In addition, the oxidative stress level was increased significantly in BmN cells after budded virus infection, while BmFerHCH could neutralize the increased ROS production induced by BmNPV. Of note, we found that ROS was involved in BmNPV-induced apoptosis. Through inhibiting ROS, apoptosis was suppressed by BmFerHCH, whereas BmFerHCH knockdown facilitated apoptosis. Therefore, we hypothesize that BmFerHCH-mediated inhibition of virus-induced apoptosis depends on suppressing ROS accumulation and, thereby, facilitates virus replication. These results suggest that BmFerHCH plays an important role in facilitating BmNPV proliferation and modulating BmFerHCH is potential strategy for studying host-pathogen interactions.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Apoferritinas/metabolismo , Apoptose , Bombyx/genética , Proliferação de Células , Ferritinas/genética , Ferritinas/metabolismo , Nucleopoliedrovírus/genética , Espécies Reativas de Oxigênio/metabolismo
7.
Insects ; 12(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34442307

RESUMO

ß-1,3-glucan recognition proteins (ßGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori ß-1,3-glucan recognition protein gene named BmßGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmßGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmßGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmßGRP4 in 5th instar larvae, while the overexpression of BmßGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmßGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmßGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmßGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmßGRP4 to escape host antiviral defense. Taken together, these results show that BmßGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.

8.
Dev Comp Immunol ; 119: 104035, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33535067

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious pathogenic microorganism that causes tremendous loss to sericulture. Previous studies have found that some proteins of serine protease family in the digestive juice of B. mori larvae have anti-BmNPV activity. In our previous publication about proteome analysis of the digestive juice of B. mori larvae, the digestive enzyme trypsin, alkaline A (BmTA) was filtered as a differentially expressed protein possibly involved in BmNPV resistance. Here, the biological characteristics and anti-BmNPV functions of BmTA were comprehensively analysed. The cDNA sequence of BmTA had an ORF of 768 nucleotides encoding 255 amino acid residues. Domain architecture analysis showed that BmTA contained a signal peptide and a typical Tryp_SPc domain. Quantitative real-time PCR analysis showed that BmTA was highly expressed in the larval stages and specifically expressed in the midgut of B. mori larvae. The expression level of BmTA in BmNPV resistant strain A35 was higher than that in susceptible strain P50. After BmNPV infection, the expression of BmTA increased in both strains from 24 to 72 h. Virus amplification analysis showed that the relative levels of VP39 in B. mori larvae and BmN cells infected with the appropriate concentration of recombinant-BmTA-treated BmNPV were significantly lower than in the control groups. Moreover, overexpression of BmTA in BmN cells significantly inhibited the amplification of BmNPV. Taken together, the results of this study indicated that BmTA possessed anti-BmNPV activity in B. mori, which broadens the horizon for virus-resistant breeding of silkworms.


Assuntos
Bombyx/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/imunologia , Nucleopoliedrovírus/imunologia , Tripsina/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Bombyx/genética , Bombyx/virologia , Linhagem Celular , Sistema Digestório/imunologia , Sistema Digestório/metabolismo , Sistema Digestório/virologia , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/imunologia , Larva/virologia , Nucleopoliedrovírus/fisiologia , Filogenia , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tripsina/classificação , Tripsina/genética
9.
Front Microbiol ; 11: 1481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695093

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. However, the molecular mechanism of silkworm resistance to BmNPV and the interactions of this virus with the host during infection remain largely unclear. To explore the virus-binding proteins of silkworms, the midgut subcellular component proteins that may interact with BmNPV were analyzed in vitro based on one- and two-dimensional electrophoresis and far-western blotting combined with mass spectrometry (MS). A total of 24 proteins were determined to be specifically bound to budded viruses (BVs) in two subcellular fractions (mitochondria and microsomes). These proteins were involved in viral transportation, energy metabolism, apoptosis and viral propagation, and they responded to BmNPV infection with different expression profiles in different resistant strains. In particular, almost all the identified proteins were downregulated in the A35 strain following BmNPV infection. Interestingly, there were no virus-binding proteins identified in the cytosolic fraction of the silkworm midgut. Two candidate proteins, RACK1 and VDAC2, interacted with BVs, as determined with far-western blotting and reverse far-western blotting. We speculated that the proteins interacting with the virus could either enhance or inhibit the infection of the virus. The data provide comprehensive useful information for further research on the interaction of the host with BmNPV.

10.
Insects ; 11(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121517

RESUMO

Previous studies have revealed that some proteins in Bombyx mori larvae digestive juice show antiviral activity. Here, based on the label-free proteomics data, BmLipase member H-A (BmLHA) was identified as being involved in the response to BmNPV infection in B. mori larvae digestive juice. In the present study, a gene encoding the BmLHA protein in B. mori was characterized. The protein has an open reading fragment of 999 bp, encoding a predicted 332 amino acid residue-protein with a molecular weight of approximately 35.9 kDa. The phylogenetic analysis revealed that BmLHA shares a close genetic distance with Papilio xuthus Lipase member H-A. BmLHA was highly expressed in the middle part of the B. mori gut, and the expression level increased with instar rising in larvae. There was higher expression of BmLHA in A35 than in P50 strains, and it was upregulated in both A35 and P50 strains, following BmNPV infection. The expression level of VP39 decreased significantly in appropriate recombinant-BmLHA-treated groups compared with the PBS-treated group in B. mori larvae and BmN cells. Meanwhile, overexpression of BmLHA significantly reduced the infectivity of BmNPV in BmN cells. These results indicated that BmLHA did not have digestive function but had anti-BmNPV activity. Taken together, our work provides valuable data for the clarification of the molecular characterization BmLHA and supplements research on proteins of anti-BmNPV activity in B. mori.

11.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968548

RESUMO

DNA modification is a naturally occurring DNA modification in prokaryotic and eukaryotic organisms and is involved in several biological processes. Although genome-wide methylation has been studied in many insects, the understanding of global and genomic DNA methylation during insect early embryonic development, is lacking especially for insect diapause. In this study, we analyzed the relationship between DNA methylomes and transcriptomes in diapause-destined eggs compared to diapause-terminated eggs in the silkworm, Bombyx mori (B. mori). The results revealed that methylation was sparse in this species, as previously reported. Moreover, methylation levels in diapause-terminated eggs (HCl-treated) were 0.05% higher than in non-treated eggs, mainly due to the contribution of CG methylation sites. Methylation tends to occur in the coding sequences and promoter regions, especially at transcription initiation sites and short interspersed elements. Additionally, 364 methylome- and transcriptome-associated genes were identified, which showed significant differences in methylation and expression levels in diapause-destined eggs when compared with diapause-terminated eggs, and 74% of methylome and transcriptome associated genes showed both hypermethylation and elevated expression. Most importantly, Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses showed that methylation may be positively associated with Bombyx mori embryonic development, by regulating cell differentiation, metabolism, apoptosis pathways and phosphorylation. Through analyzing the G2/M phase-specific E3 ubiquitin-protein ligase (G2E3), we speculate that methylation may affect embryo diapause by regulating the cell cycle in Bombyx mori. These findings will help unravel potential linkages between DNA methylation and gene expression during early insect embryonic development and insect diapause.


Assuntos
Bombyx/genética , Metilação de DNA , Diapausa de Inseto/genética , Epigenoma , Transcriptoma , Animais , Bombyx/embriologia , Bombyx/fisiologia , Desenvolvimento Embrionário/genética , Feminino , Proteínas de Insetos , Óvulo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...