Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894536

RESUMO

Lung adenocarcinoma (LUAD) is the most common subtype of NSCLC, characterized by poor prognosis and frequently diagnosed at advanced. While previous studies have demonstrated pleckstrin-2 (PLEK2) as aberrantly expressed and implicated in tumorigenesis across various tumor types, including LUAD, the molecular mechanisms underlying PLEK2-mediated LUAD progression remain incompletely understood. In this study, we obtained data from The Cancer Genome Atlas (TCGA) database to assess PLEK2 expression in LUAD, a finding further confirmed through analysis of human tissue specimens. PLEK2-silenced LUAD cellular models were subsequently constructed to examine the functional role of PLEK2 both in vitro and in vivo. Our results showed elevated PLEK2 expression in LUAD, correlating with poor patients' prognosis. PLEK2 knockdown led to a significant suppression of LUAD cell proliferation and migration, accompanied by enhanced apoptosis. Moreover, tumor growth in mice injected with PLEK2-silencing LUAD cells was impaired. Gene expression profiling and Co-IP assays suggested direct interaction between PLEK2 and SPC25, with downregulation of SPC25 similarly impairing cell proliferation and migration. Additionally, we revealed phosphoinositide 3-kinase (PI3K)/AKT signaling activation as requisite for PLEK2-induced malignant phenotypes in LUAD. Collectively, our findings underscore PLEK2's oncogenic potential in LUAD, suggesting its utility as a prognostic indicator and therapeutic target for LUAD management.

2.
Oncol Lett ; 26(1): 298, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37323822

RESUMO

Mitochondrial ribosome protein L51 (MRPL51) is a 39S subunit protein of the mitochondrial ribosome. Its dysregulation may be involved in non-small cell lung cancer. The present study aimed to explore MRPL51 expression in lung adenocarcinoma (LUAD) and normal lung tissues, as well as its regulatory effects on malignant LUAD behaviors. In addition, the role of forkhead box protein M1 (FOXM1) in MRPL51 transcription was studied. Bioinformatics analysis and subsequent in vitro experiments, including western blotting, immunofluorescent staining, Transwell invasion assay, dual-luciferase assay and chromatin immunoprecipitation quantitative PCR were conducted. The results demonstrated that MRPL51 expression was upregulated at both the mRNA and protein levels in LUAD tissues compared with normal lung tissues. Gene Set Enrichment Analysis demonstrated that LUAD tissues with higher MRPL51 expression also had higher expression levels of genes enriched in multiple gene sets, including 'DNA_REPAIR', 'UNFOLDED_PROTEIN_RESPONSE', 'MYC_TARGETS_V1', 'OXIDATIVE_ PHOSPHORYLATION', 'MTORC1_SIGNALING', 'REACTIVE_OXYGEN_SPECIES_PATHWAY', 'MYC_ TARGETS_V2', 'E2F_TARGETS' and 'G2M_ CHECKPOINT'. MRPL51 expression was positively correlated with 'cell cycle', 'DNA damage', 'DNA repair', epithelial-mesenchymal transition ('EMT'), 'invasion' and 'proliferation' of LUAD cells at the single-cell level. Compared to the negative control, MRPL51 knockdown decreased N-cadherin and vimentin expression but increased E-cadherin expression in A549 and Calu-3 cells. MRPL51 knockdown suppressed cell proliferation, induced G1 phase arrest and decreased cell invasion. Patients with LUAD and higher MRPL51 expression had a significantly shorter overall survival (OS). FOXM1 could bind to the MRPL51 gene promoter and activate its transcription. In conclusion, MRPL51 was transcriptionally activated by FOXM1 in LUAD and contributed to the malignant behaviors of tumor cells, including EMT, cell cycle progression and invasion. High MRPL51 expression may be a prognostic biomarker indicating poor OS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA