Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38429498

RESUMO

People with depression and other neuropsychiatric disorders can experience motivational dysfunctions such as fatigue and anergia, which involve reduced exertion of effort in goal-directed activity. To model effort-related motivational dysfunction, effort-based choice tasks can be used, in which rats can select between obtaining a preferred reinforcer by high exertion of effort vs. a low effort/less preferred option. Preclinical data indicate that dopamine transport (DAT) inhibitors can reverse pharmacologically-induced low-effort biases and increase selection of high-effort options in effort-based choice tasks. Although classical DAT blockers like cocaine can produce undesirable effects such as liability for misuse and psychotic reactions, not all DAT inhibitors have the same neurochemical profile. The current study characterized the effort-related effects of novel DAT inhibitors that are modafinil analogs and have a range of binding profiles and neurochemical actions (JJC8-088, JJC8-089, RDS3-094, and JJC8-091) by using two different effort-related choice behavior tasks in male Sprague-Dawley rats. JJC8-088, JJC8-089, and RDS3-094 significantly reversed the low-effort bias induced by the VMAT-2 inhibitor tetrabenazine, increasing selection of high-effort fixed ratio 5 lever pressing vs. chow intake. In addition, JJC8-089 reversed the effects of tetrabenazine in female rats. JJC8-088 and JJC8-089 also increased selection of high-effort progressive ratio responding in a choice task. However, JJC8-091 failed to produce these outcomes, potentially due to its unique pharmacological profile (i.e., binding to an occluded conformation of DAT). Assessment of a broad range of DAT inhibitors with different neurochemical characteristics may lead to the identification of compounds that are useful for treating motivational dysfunction in humans.

2.
Eur J Neurosci ; 59(10): 2436-2449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444104

RESUMO

Psychostimulant use disorders (PSUD) are prevalent; however, no FDA-approved medications have been made available for treatment. Previous studies have shown that dual inhibitors of the dopamine transporter (DAT) and sigma receptors significantly reduce the behavioral/reinforcing effects of cocaine, which have been associated with stimulation of extracellular dopamine (DA) levels resulting from DAT inhibition. Here, we employ microdialysis and fast scan cyclic voltammetry (FSCV) procedures to investigate the effects of dual inhibitors of DAT and sigma receptors in combination with cocaine on nucleus accumbens shell (NAS) DA dynamics in naïve male Sprague Dawley rats. In microdialysis studies, administration of rimcazole (3, 10 mg/kg; i.p.) or its structural analog SH 3-24 (1, 3 mg/kg; i.p.), compounds that are dual inhibitors of DAT and sigma receptors, significantly reduced NAS DA efflux stimulated by increasing doses of cocaine (0.1, 0.3, 1.0 mg/kg; i.v.). Using the same experimental conditions, in FSCV tests, we show that rimcazole pretreatments attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Under the same conditions, JJC8-091, a modafinil analog and dual inhibitor of DAT and sigma receptors, similarly attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Our results provide the neurochemical groundwork towards understanding actions of dual inhibitors of DAT and sigma receptors on DA dynamics that likely mediate the behavioral effects of psychostimulants like cocaine.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina , Dopamina , Núcleo Accumbens , Ratos Sprague-Dawley , Receptores sigma , Animais , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores sigma/metabolismo , Receptores sigma/antagonistas & inibidores , Masculino , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Dopamina/metabolismo , Cocaína/farmacologia , Ratos , Inibidores da Captação de Dopamina/farmacologia , Piperidinas/farmacologia , Compostos Benzidrílicos/farmacologia , Microdiálise/métodos , Modafinila/farmacologia
3.
ACS Pharmacol Transl Sci ; 7(2): 515-532, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357284

RESUMO

Currently, there are no FDA-approved medications for the treatment of psychostimulant use disorders (PSUD). We have previously discovered "atypical" dopamine transporter (DAT) inhibitors that do not display psychostimulant-like behaviors and may be useful as medications to treat PSUD. Lead candidates (e.g., JJC8-091, 1) have shown promising in vivo profiles in rodents; however, reducing hERG (human ether-à-go-go-related gene) activity, a predictor of cardiotoxicity, has remained a challenge. Herein, a series of 30 (([1,1'-biphenyl]-2-yl)methyl)sulfinylalkyl alicyclic amines was synthesized and evaluated for DAT and serotonin transporter (SERT) binding affinities. A subset of analogues was tested for hERG activity, and the IC50 values were compared to those predicted by our hERG QSAR models, which showed robust predictive power. Multiparameter optimization scores (MPO > 3) indicated central nervous system (CNS) penetrability. Finally, comparison of affinities in human DAT and its Y156F and Y335A mutants suggested that several compounds prefer an inward facing conformation indicating an atypical DAT inhibitor profile.

4.
J Med Chem ; 67(1): 709-727, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38117239

RESUMO

Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in the preclinical models of psychostimulant use disorders (PSUD). In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (JJC8-091, 3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. Improvements in DAT affinity and metabolic stability were desirable for discovering pipeline drug candidates. Thus, a series of 1-(4-(2-bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines were synthesized and evaluated for binding affinities at DAT and the serotonin transporter (SERT). Replacement of the piperazine with either a homopiperazine or a piperidine ring system was well tolerated at DAT (Ki range = 3-382 nM). However, only the piperidine analogues (20a-d) showed improved metabolic stability in rat liver microsomes as compared to the previously reported analogues. Compounds 12b and 20a appeared to retain an atypical DAT inhibitor profile, based on negligible locomotor activity in mice and molecular modeling that predicts binding to an inward-facing conformation of DAT.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Ratos , Camundongos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina , Aminas/farmacologia , Relação Estrutura-Atividade , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Piperidinas/farmacologia
5.
Transl Psychiatry ; 13(1): 202, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311803

RESUMO

Typical and atypical dopamine uptake inhibitors (DUIs) prefer distinct conformations of the dopamine transporter (DAT) to form ligand-transporter complexes, resulting in markedly different effects on behavior, neurochemistry, and potential for addiction. Here we show that cocaine and cocaine-like typical psychostimulants elicit changes in DA dynamics distinct from those elicited by atypical DUIs, as measured via voltammetry procedures. While both classes of DUIs reduced DA clearance rate, an effect significantly related to their DAT affinity, only typical DUIs elicited a significant stimulation of evoked DA release, an effect unrelated to their DAT affinity, which suggests a mechanism of action other than or in addition to DAT blockade. When given in combination, typical DUIs enhance the stimulatory effects of cocaine on evoked DA release while atypical DUIs blunt them. Pretreatments with an inhibitor of CaMKIIα, a kinase that interacts with DAT and that regulates synapsin phosphorylation and mobilization of reserve pools of DA vesicles, blunted the effects of cocaine on evoked DA release. Our results suggest a role for CaMKIIα in modulating the effects of cocaine on evoked DA release without affecting cocaine inhibition of DA reuptake. This effect is related to a specific DAT conformation stabilized by cocaine. Moreover, atypical DUIs, which prefer a distinct DAT conformation, blunt cocaine's neurochemical and behavioral effects, indicating a unique mechanism underlying their potential as medications for treating psychostimulant use disorder.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Cocaína/farmacologia , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina
6.
J Pharmacol Exp Ther ; 384(3): 353-362, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36627204

RESUMO

Despite decades of research, there are no medications approved by the United States Food and Drug Administration to treat stimulant use disorders. Self-administration procedures are widely used to screen candidate medications for stimulant use disorder, although preclinical reductions in stimulant self-administration have not translated to meaningful reductions in stimulant use in humans. One possible reason for this discordance is that most preclinical studies evaluate candidate medications under conditions that promote predictable, and well-regulated patterns of drug-taking rather than the dysregulated and/or compulsive patterns of drug-taking characteristic of a stimulant use disorder. A subset of rats ("high-responders") that self-administer 3,4-methelyendioxypyrovalerone (MDPV), a monoamine uptake inhibitor, develop high levels of dysregulated drug-taking consistent with behaviors related to stimulant use disorders. Because MDPV acts on dopamine, serotonin (5-HT), and sigma receptor systems, the current studies compared the potency and effectiveness of a dopamine D3 receptor partial agonist (VK4-40) or antagonist (VK4-116), a sigma receptor antagonist (BD1063), a dopamine D2/D3/sigma receptor antagonist (haloperidol), and a 5-HT2C receptor agonist (CP-809,101) to reduce MDPV (0.0032-0.1 mg/kg/infusion) self-administration in high- and low-responding rats as well as rats self-administering cocaine (0.032-1 mg/kg/infusion). VK4-40, VK4-116, haloperidol, and CP-809,101 were equipotent and effective at reducing drug-taking in all three groups of rats, including the high-responders; however, VK4-116 and CP-809,101 were less potent at reducing drug-taking in female compared with male rats. Together, these studies suggest that drugs targeting dopamine D3 or 5-HT2C receptors can effectively reduce dysregulated patterns of stimulant use, highlighting their potential utility for treating stimulant use disorders. SIGNIFICANCE STATEMENT: There are no United States Food and Drug Administration-approved treatments for stimulant use disorder, perhaps in part because candidate medications are most often evaluated in preclinical models using male subjects with well-regulated drug-taking. In an attempt to better model aberrant drug taking, this study found compounds acting at dopamine D3 or 5-HT2C receptors can attenuate drug-taking in male and female rats that self-administered two different stimulants and exhibited either a high or low substance use disorder-like phenotype.


Assuntos
Cocaína , Receptores sigma , Animais , Feminino , Humanos , Masculino , Ratos , Dopamina , Relação Dose-Resposta a Droga , Haloperidol , Autoadministração , Serotonina , Catinona Sintética
7.
J Pharmacol Exp Ther ; 384(3): 372-381, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36507847

RESUMO

Although there are no Food and Drug Administration-approved treatments for cocaine use disorder, several modafinil analogs have demonstrated promise in reducing cocaine self-administration and reinstatement in rats. Furthermore, the range of dopamine transporter (DAT) compounds provides an opportunity to develop pharmacotherapeutics without abuse liability. This study extended the comparison of JJC8-088 and JJC8-091, the former compound having higher DAT affinity and predicted abuse liability, to rhesus monkeys using a concurrent cocaine versus food schedule of reinforcement. First, binding to striatal DAT was examined in cocaine-naïve monkey tissue. Next, intravenous pharmacokinetics of both JJC compounds were evaluated in cocaine-experienced male monkeys (n = 3/drug). In behavioral studies, acute and chronic administration of both compounds were evaluated in these same monkeys responding under a concurrent food versus cocaine (0 and 0.003-0.1 mg/kg per injection) schedule of reinforcement. In nonhuman primate striatum, JJC8-088 had higher DAT affinity compared with JJC8-091 (14.4 ± 9 versus 2730 ± 1270 nM, respectively). Both JJC compounds had favorable plasma pharmacokinetics for behavioral assessments, with half-lives of 1.1 hours and 3.5 hours for JJC8-088 (0.7 mg/kg, i.v.) and JJC8-091 (1.9 mg/kg, i.v.), respectively. Acute treatment with both compounds shifted the cocaine dose-response curve to the left. Chronic treatment with JJC8-088 decreased cocaine choice in two of the three monkeys, whereas JJC8-091 only modestly reduced cocaine allocation in one monkey. Differences in affinities of JJC8-091 DAT binding in monkeys compared with rats may account for the poor rodent-to-monkey translation. Future studies should evaluate atypical DAT blockers in combination with behavioral interventions that may further decrease cocaine choice. SIGNIFICANCE STATEMENT: Cocaine use disorder (CUD) remains a significant public health problem with no Food and Drug Administration-approved treatments. The ability of drugs that act in the brain in a similar manner to cocaine, but with lower abuse liability, has clinical implications for a treatment of CUD.


Assuntos
Cocaína , Masculino , Ratos , Animais , Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Macaca mulatta/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Autoadministração , Relação Dose-Resposta a Droga
8.
J Med Chem ; 64(20): 15313-15333, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34636551

RESUMO

The crystal structure of the dopamine D3 receptor (D3R) in complex with eticlopride inspired the design of bitopic ligands that explored (1) N-alkylation of the eticlopride's pyrrolidine ring, (2) shifting of the position of the pyrrolidine nitrogen, (3) expansion of the pyrrolidine ring system, and (4) incorporation of O-alkylations at the 4-position. Structure activity relationships (SAR) revealed that moving the N- or expanding the pyrrolidine ring was detrimental to D2R/D3R binding affinities. Small pyrrolidine N-alkyl groups were poorly tolerated, but the addition of a linker and secondary pharmacophore (SP) improved affinities. Moreover, O-alkylated analogues showed higher binding affinities compared to analogously N-alkylated compounds, e.g., O-alkylated 33 (D3R, 0.436 nM and D2R, 1.77 nM) vs the N-alkylated 11 (D3R, 6.97 nM and D2R, 25.3 nM). All lead molecules were functional D2R/D3R antagonists. Molecular models confirmed that 4-position modifications would be well-tolerated for future D2R/D3R bioconjugate tools that require long linkers and or sterically bulky groups.


Assuntos
Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Salicilamidas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Salicilamidas/síntese química , Salicilamidas/química , Relação Estrutura-Atividade
9.
J Chem Inf Model ; 61(9): 4266-4279, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34420294

RESUMO

Psychostimulant drugs, such as cocaine, inhibit dopamine reuptake via blockading the dopamine transporter (DAT), which is the primary mechanism underpinning their abuse. Atypical DAT inhibitors are dissimilar to cocaine and can block cocaine- or methamphetamine-induced behaviors, supporting their development as part of a treatment regimen for psychostimulant use disorders. When developing these atypical DAT inhibitors as medications, it is necessary to avoid off-target binding that can produce unwanted side effects or toxicities. In particular, the blockade of a potassium channel, human ether-a-go-go (hERG), can lead to potentially lethal ventricular tachycardia. In this study, we established a counter screening platform for DAT and against hERG binding by combining machine learning-based quantitative structure-activity relationship (QSAR) modeling, experimental validation, and molecular modeling and simulations. Our results show that the available data are adequate to establish robust QSAR models, as validated by chemical synthesis and pharmacological evaluation of a validation set of DAT inhibitors. Furthermore, the QSAR models based on subsets of the data according to experimental approaches used have predictive power as well, which opens the door to target specific functional states of a protein. Complementarily, our molecular modeling and simulations identified the structural elements responsible for a pair of DAT inhibitors having opposite binding affinity trends at DAT and hERG, which can be leveraged for rational optimization of lead atypical DAT inhibitors with desired pharmacological properties.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Éter , Humanos , Aprendizado de Máquina , Modelos Moleculares
10.
J Med Chem ; 64(11): 7778-7808, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34011153

RESUMO

The need for safer pain-management therapies with decreased abuse liability inspired a novel drug design that retains µ-opioid receptor (MOR)-mediated analgesia, while minimizing addictive liability. We recently demonstrated that targeting the dopamine D3 receptor (D3R) with highly selective antagonists/partial agonists can reduce opioid self-administration and reinstatement to drug seeking in rodent models without diminishing antinociceptive effects. The identification of the D3R as a target for the treatment of opioid use disorders prompted the idea of generating a class of ligands presenting bitopic or bivalent structures, allowing the dual-target binding of the MOR and D3R. Structure-activity relationship studies using computationally aided drug design and in vitro binding assays led to the identification of potent dual-target leads (23, 28, and 40), based on different structural templates and scaffolds, with moderate (sub-micromolar) to high (low nanomolar/sub-nanomolar) binding affinities. Bioluminescence resonance energy transfer-based functional studies revealed MOR agonist-D3R antagonist/partial agonist efficacies that suggest potential for maintaining analgesia with reduced opioid-abuse liability.


Assuntos
Antagonistas de Dopamina/química , Ligantes , Receptores de Dopamina D3/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/uso terapêutico , Animais , Sítios de Ligação , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/uso terapêutico , Modelos Animais de Doenças , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/uso terapêutico , Desenho de Fármacos , Transferência Ressonante de Energia de Fluorescência , Camundongos , Simulação de Acoplamento Molecular , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Dor/tratamento farmacológico , Manejo da Dor , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/antagonistas & inibidores , Receptores Opioides mu/agonistas , Relação Estrutura-Atividade
11.
ACS Pharmacol Transl Sci ; 4(2): 503-516, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860180

RESUMO

Missense mutations that give rise to protein misfolding are rare, but collectively, defective protein folding diseases are consequential. Folding deficiencies are amenable to pharmacological correction (pharmacochaperoning), but the underlying mechanisms remain enigmatic. Ibogaine and its active metabolite noribogaine correct folding defects in the dopamine transporter (DAT), but they rescue only a very limited number of folding-deficient DAT mutant proteins, which give rise to infantile Parkinsonism and dystonia. Herein, a series of analogs was generated by reconfiguring the complex ibogaine ring system and exploring the structural requirements for binding to wild-type transporters, as well as for rescuing two equivalent synthetic folding-deficient mutants, SERT-PG601,602AA and DAT-PG584,585AA. The most active tropane-based analog (9b) was also an effective pharmacochaperone in vivo in Drosophila harboring the DAT-PG584,585AA mutation and rescued 6 out of 13 disease-associated human DAT mutant proteins in vitro. Hence, a novel lead pharmacochaperone has been identified that demonstrates medication development potential for patients harboring DAT mutations.

12.
Eur J Med Chem ; 208: 112674, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32947229

RESUMO

Despite considerable efforts to develop medications to treat psychostimulant use disorders, none have proven effective, leaving an underserved patient population and unanswered questions as to what mechanism(s) of action should be targeted for developing pharmacotherapies. Atypical dopamine transporter (DAT) inhibitors, based on (±)modafinil, have shown therapeutic potential in preclinical models of psychostimulant abuse. However, metabolic instability among other limitations to piperazine analogues 1-3 have impeded further development. Herein, bioisosteric substitutions of the piperazine ring were explored with a series of aminopiperidines (A) and piperidine amines (B) wherein compounds with either a terminal tertiary amine or amide were synthesized. Several lead compounds showed high to moderate DAT affinities and metabolic stability in rat liver microsomes. Aminopiperidines 7 (DAT Ki = 50.6 nM), 21b (DAT Ki = 77.2 nM) and 33 (DAT Ki = 30.0 nM) produced only minimal stimulation of ambulatory activity in mice, compared to cocaine, suggesting an atypical DAT inhibitor profile.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Modafinila/farmacologia , Piperidinas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/síntese química , Estimulantes do Sistema Nervoso Central/metabolismo , Estabilidade de Medicamentos , Cobaias , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Modafinila/análogos & derivados , Modafinila/metabolismo , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/metabolismo , Ratos Sprague-Dawley , Receptores sigma/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Relação Estrutura-Atividade , Receptor Sigma-1
13.
Br J Pharmacol ; 177(20): 4796-4807, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851643

RESUMO

BACKGROUND AND PURPOSE: Despite widespread abuse of cocaine, there are no approved treatments for cocaine use disorder. Chronic cocaine use is associated with up-regulated dopamine D3 receptor expression in the brain. Therefore, most D3 -based medication development has focused on D3 antagonists. However, D3 antagonists do not attenuate cocaine intake under "easy" self-administration conditions, when response requirements are low. We evaluated a novel, highly selective and metabolically stable D3 partial agonist, (±)VK4-40, for its efficacy in reducing cocaine intake and relapse to drug seeking. EXPERIMENTAL APPROACH: The impact of (±)VK4-40 on cocaine intake and relapse was evaluated using intravenous self-administration procedures under a fixed-ratio 2 reinforcement schedule and cocaine-primed reinstatement conditions in rats. Optogenetic brain-stimulation reward procedures were used to evaluate the interaction of (±)VK4-40 and cocaine in the mesolimbic dopamine system in mice. Sucrose self-administration in rats and a conditioned place preference paradigm in mice were used to evaluate the abuse potential of (±)VK4-40 alone and other unwanted effects. KEY RESULTS: (±)VK4-40 dose-dependently reduced cocaine self-administration and cocaine-primed reinstatement of drug-seeking behaviour. (±)VK4-40 also inhibited cocaine-enhanced brain-stimulation reward caused by optogenetic stimulation of dopamine neurons in the ventral tegmental area. (±)VK4-40 alone decreased brain-stimulation reward but produced neither conditioned place preference nor place aversion. This new D3 partial agonist also failed to alter oral sucrose self-administration. CONCLUSION AND IMPLICATIONS: The novel D3 partial agonist, (±)VK4-40 attenuates cocaine reward and relapse in rodents, without significant unwanted effects. These findings support further investigation of D3 partial agonists as putative treatments for cocaine use disorder.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Preparações Farmacêuticas , Animais , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Dopamina , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Camundongos , Ratos , Ratos Long-Evans , Receptores de Dopamina D3 , Recidiva , Recompensa , Roedores , Autoadministração
14.
J Med Chem ; 63(5): 2343-2357, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31661268

RESUMO

Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in preclinical models of psychostimulant abuse. In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. While further development of 3b is ongoing, diastereomeric separation, as well as improvements in potency and pharmacokinetics were desirable for discovering pipeline drug candidates. Thus, a series of bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines, where the piperazine-2-propanol scaffold was modified, were designed, synthesized, and evaluated for binding affinities at DAT, as well as the serotonin transporter and σ1 receptors. Within the series, 14a showed improved DAT affinity (Ki = 23 nM) over 3b (Ki = 230 nM), moderate metabolic stability in human liver microsomes, and a hERG/DAT affinity ratio = 28. While 14a increased locomotor activity relative to vehicle, it was significantly lower than activity produced by cocaine. These results support further investigation of 14a as a potential treatment for psychostimulant use disorders.


Assuntos
Aminas/química , Aminas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Alquilação , Aminas/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Halogenação , Humanos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Compostos de Enxofre/química , Compostos de Enxofre/metabolismo , Compostos de Enxofre/farmacologia
15.
Neuropharmacology ; 158: 107597, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974107

RESUMO

Prescription opioid abuse is a global crisis. New treatment strategies for pain and opioid use disorders are urgently required. We evaluated the effects of R-VK4-40, a highly selective dopamine (DA) D3 receptor (D3R) antagonist, on the rewarding and analgesic effects of oxycodone, the most commonly abused prescription opioid, in rats and mice. Systemic administration of R-VK4-40 dose-dependently inhibited oxycodone self-administration and shifted oxycodone dose-response curves downward in rats. Pretreatment with R-VK4-40 also dose-dependently lowered break-points for oxycodone under a progressive-ratio schedule. To determine whether a DA-dependent mechanism underlies the impact of D3 antagonism in reducing opioid reward, we used optogenetic approaches to examine intracranial self-stimulation (ICSS) maintained by optical activation of ventral tegmental area (VTA) DA neurons in DAT-Cre mice. Photoactivation of VTA DA in non-drug treated mice produced robust ICSS behavior. Lower doses of oxycodone enhanced, while higher doses inhibited, optical ICSS. Pretreatment with R-VK4-40 blocked oxycodone-enhanced brain-stimulation reward. By itself, R-VK4-40 produced a modest dose-dependent reduction in optical ICSS. Pretreatment with R-VK4-40 did not compromise the antinociceptive effects of oxycodone in rats, and R-VK4-40 alone produced mild antinociceptive effects without altering open-field locomotion or rotarod locomotor performance. Together, these findings suggest R-VK4-40 may permit a lower dose of prescription opioids for pain management, potentially mitigating tolerance and dependence, while diminishing reward potency. Hence, development of R-VK4-40 as a therapy for the treatment of opioid use disorders and/or pain is currently underway. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.


Assuntos
Analgésicos Opioides/farmacologia , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Indóis/farmacologia , Nociceptividade/efeitos dos fármacos , Oxicodona/farmacologia , Piperazinas/farmacologia , Receptores de Dopamina D3/antagonistas & inibidores , Recompensa , Autoestimulação/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Optogenética , Ratos , Ratos Long-Evans , Esquema de Reforço , Autoadministração , Área Tegmentar Ventral/metabolismo
16.
Neuropharmacology ; 158: 107609, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31009632

RESUMO

Substance use disorders (SUD) are serious public health problems worldwide. Although significant progress has been made in understanding the neurobiology of drug reward and the transition to addiction, effective pharmacotherapies for SUD remain limited and a majority of drug users relapse even after a period of treatment. The United States Food and Drug Administration (FDA) has approved several medications for opioid, nicotine, and alcohol use disorders, whereas none are approved for the treatment of cocaine or other psychostimulant use disorders. The medications approved by the FDA for the treatment of SUD can be divided into two major classes - agonist replacement therapies, such as methadone and buprenorphine for opioid use disorders (OUD), nicotine replacement therapy (NRT) and varenicline for nicotine use disorders (NUD), and antagonist therapies, such as naloxone for opioid overdose and naltrexone for promoting abstinence. In the present review, we primarily focus on the pharmacological rationale of agonist replacement strategies in treatment of opioid dependence, and the potential translation of this rationale to new therapies for cocaine use disorders. We begin by describing the neural mechanisms underlying opioid reward, followed by preclinical and clinical findings supporting the utility of agonist therapies in the treatment of OUD. We then discuss recent progress of agonist therapies for cocaine use disorders based on lessons learned from methadone and buprenorphine. We contend that future studies should identify agonist pharmacotherapies that can facilitate abstinence in patients who are motivated to quit their illicit drug use. Focusing on those that are able to achieve abstinence from cocaine will provide a platform to broaden the effectiveness of medication and psychosocial treatment strategies for this underserved population. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.


Assuntos
Analgésicos Opioides/uso terapêutico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Inibidores da Captação de Dopamina/uso terapêutico , Tratamento de Substituição de Opiáceos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Buprenorfina/uso terapêutico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Dextroanfetamina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Desenvolvimento de Medicamentos , Humanos , Metadona/uso terapêutico , Metilfenidato/uso terapêutico , Modafinila/uso terapêutico , Agonistas Nicotínicos/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/metabolismo , Oxalatos , Piperazinas , Receptores Opioides mu/agonistas , Tabagismo/tratamento farmacológico , Tropanos/uso terapêutico , Vareniclina/uso terapêutico
17.
Neuropsychopharmacology ; 44(8): 1435-1444, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30858517

RESUMO

Medication-assisted treatments are unavailable to patients with cocaine use disorders. Efforts to develop potential pharmacotherapies have led to the identification of a promising lead molecule, JJC8-091, that demonstrates a novel binding mode at the dopamine transporter (DAT). Here, JJC8-091 and a structural analogue, JJC8-088, were extensively and comparatively assessed to elucidate neurochemical correlates to their divergent behavioral profiles. Despite sharing significant structural similarity, JJC8-088 was more cocaine-like, increasing extracellular DA concentrations in the nucleus accumbens shell (NAS) efficaciously and more potently than JJC8-091. In contrast, JJC8-091 was not self-administered and was effective in blocking cocaine-induced reinstatement to drug seeking. Electrophysiology experiments confirmed that JJC8-091 was more effective than JJC8-088 at inhibiting cocaine-mediated enhancement of DA neurotransmission. Further, when VTA DA neurons in DAT-cre mice were optically stimulated, JJC8-088 produced a significant leftward shift in the stimulation-response curve, similar to cocaine, while JJC8-091 shifted the curve downward, suggesting attenuation of DA-mediated brain reward. Computational models predicted that JJC8-088 binds in an outward facing conformation of DAT, similar to cocaine. Conversely, JJC8-091 steers DAT towards a more occluded conformation. Collectively, these data reveal the underlying molecular mechanism at DAT that may be leveraged to rationally optimize leads for the treatment of cocaine use disorders, with JJC8-091 representing a compelling candidate for development.


Assuntos
Cocaína/antagonistas & inibidores , Inibidores da Captação de Dopamina/farmacologia , Oxalatos/farmacologia , Piperazinas/farmacologia , Animais , Cocaína/farmacologia , Dopamina/metabolismo , Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Núcleo Accumbens/metabolismo , Ratos , Autoadministração , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
18.
ACS Chem Neurosci ; 10(4): 2012-2021, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30645944

RESUMO

Recent discoveries have improved our understanding of the physiological and pathological roles of the dopamine transporter (DAT); however, only a few drugs are clinically available for DAT-implicated disorders. Among those drugs, modafinil (MOD) and its ( R)-enantiomer (R-MOD) have been used off-label as therapies for psychostimulant use disorders, but they have shown limited effectiveness in clinical trials. Recent preclinical studies on MOD and R-MOD have led to chemically modified structures aimed toward improving their neurobiological properties that might lead to more effective therapeutics for stimulant use disorders. This study examines three MOD analogues (JJC8-016, JJC8-088, and JJC8-091) with improved DAT affinities compared to their parent compound. These compounds were investigated for their effects on the neurochemistry (brain microdialysis and FSCV) and behavior (ambulatory activity) of male Swiss-Webster mice. Our data indicate that these compounds have dissimilar effects on tonic and phasic dopamine in the nucleus accumbens shell and variability in producing ambulatory activity. These results suggest that small changes in the chemical structure of a DAT inhibitor can cause compounds such as JJC8-088 to produce effects similar to abused psychostimulants like cocaine. In contrast, other compounds like JJC8-091 do not share cocaine-like effects and have a more atypical DAT-inhibitor profile, which may prove to be an advancement in the treatment of psychostimulant use disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Microdiálise/métodos , Modafinila/química , Modafinila/farmacologia , Núcleo Accumbens/metabolismo , Animais , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Estereoisomerismo
19.
Neuropsychopharmacology ; 44(8): 1415-1424, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30555159

RESUMO

Prescription opioids such as oxycodone are highly effective analgesics for clinical pain management, but their misuse and abuse have led to the current opioid epidemic in the United States. In order to ameliorate this public health crisis, the development of effective pharmacotherapies for the prevention and treatment of opioid abuse and addiction is essential and urgently required. In this study, we evaluated-in laboratory rats-the potential utility of VK4-116, a novel and highly selective dopamine D3 receptor (D3R) antagonist, for the prevention and treatment of prescription opioid use disorders. Pretreatment with VK4-116 (5-25 mg/kg, i.p.) dose-dependently inhibited the acquisition and maintenance of oxycodone self-administration. VK4-116 also lowered the break-point (BP) for oxycodone self-administration under a progressive-ratio schedule of reinforcement, shifted the oxycodone dose-response curve downward, and inhibited oxycodone extinction responding and reinstatement of oxycodone-seeking behavior. In addition, VK4-116 pretreatment dose-dependently enhanced the antinociceptive effects of oxycodone and reduced naloxone-precipitated conditioned place aversion in rats chronically treated with oxycodone. In contrast, VK4-116 had little effect on oral sucrose self-administration. Taken together, these findings indicate a central role for D3Rs in opioid reward and support further development of VK4-116 as an effective agent for mitigating the development of opioid addiction, reducing the severity of withdrawal and preventing relapse.


Assuntos
Extinção Psicológica/efeitos dos fármacos , Indóis/farmacologia , Oxicodona/antagonistas & inibidores , Medição da Dor/efeitos dos fármacos , Piperazinas/farmacologia , Analgésicos/farmacologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Oxicodona/farmacologia , Ratos , Esquema de Reforço , Autoadministração , Sacarose/antagonistas & inibidores , Sacarose/farmacologia
20.
Neuropharmacology ; 131: 96-103, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29217282

RESUMO

Methamphetamine (METH) is a highly addictive drug, but no pharmacological treatment is yet available for METH use disorders. Similar to METH, the wake-promoting drug (R)-modafinil (R-MOD) binds to the dopamine transporter (DAT). Unlike METH, R-MOD is not a substrate for transport by DAT and has low abuse potential. We tested the hypothesis that the atypical DAT inhibitor R-MOD and compounds that are derived from modafinil would decrease METH intake by reducing the actions of METH at the DAT. We tested the effects of systemic injections of R-MOD and four novel modafinil-derived ligands with increased DAT affinity (JJC8-016, JJC8-088, JJC8-089, and JJC8-091) on intravenous (i.v.) METH self-administration in rats that were allowed short access (ShA; 1 h) or long access (LgA; 6 h) to the drug. ShA rats exhibited stable METH intake over sessions, whereas LgA rats exhibited an escalation of drug intake. R-MOD decreased METH self-administration in ShA and LgA rats (in the 1st hour only). JJC8-091 and JJC8-016 decreased METH self-administration in both ShA and LgA rats. JJC8-089 decreased METH self-administration in LgA rats only, whereas JJC8-088 had no effect on METH self-administration in either ShA or LgA rats. These findings support the potential of atypical DAT inhibitors for the treatment of METH use disorders and suggest several novel compounds as candidate drugs.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Estimulantes do Sistema Nervoso Central/administração & dosagem , Comportamento Compulsivo/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Metanfetamina/administração & dosagem , Análise de Variância , Animais , Condicionamento Operante/efeitos dos fármacos , Antagonistas de Dopamina/farmacocinética , Antagonistas de Dopamina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Masculino , Modafinila , Propilaminas/farmacocinética , Propilaminas/uso terapêutico , Ratos , Ratos Wistar , Sacarina/administração & dosagem , Autoadministração , Fatores de Tempo , Promotores da Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...