Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 710: 149910, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593619

RESUMO

Ginsenoside Rb1 (Rb1), an active component isolated from traditional Chinese medicine Ginseng, is beneficial to many cardiovascular diseases. However, whether it can protect against doxorubicin induced cardiotoxicity (DIC) is not clear yet. In this study, we aimed to investigate the role of Rb1 in DIC. Mice were injected with a single dose of doxorubicin (20 mg/kg) to induce acute cardiotoxicity. Rb1 was given daily gavage to mice for 7 days. Changes in cardiac function, myocardium histopathology, oxidative stress, cardiomyocyte mitochondrion morphology were studied to evaluate Rb1's function on DIC. Meanwhile, RNA-seq analysis was performed to explore the potential underline molecular mechanism involved in Rb1's function on DIC. We found that Rb1 treatment can improve survival rate and body weight in Dox treated mice group. Rb1 can attenuate Dox induced cardiac dysfunction and myocardium hypertrophy and interstitial fibrosis. The oxidative stress increase and cardiomyocyte mitochondrion injury were improved by Rb1 treatment. Mechanism study found that Rb1's beneficial role in DIC is through suppressing of autophagy and ferroptosis. This study shown that Ginsenoside Rb1 can protect against DIC by regulating autophagy and ferroptosis.


Assuntos
Cardiotoxicidade , Ferroptose , Ginsenosídeos , Animais , Camundongos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Ginsenosídeos/farmacologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
2.
Cell Death Discov ; 10(1): 142, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490981

RESUMO

Pleckstrin homology domain-containing family M member 2 (PLEKHM2) is an essential adaptor for lysosomal trafficking and its homozygous truncation have been reported to cause early onset dilated cardiomyopathy (DCM). However, the molecular mechanism of PLEKHM2 deficiency in DCM pathogenesis and progression is poorly understood. Here, we generated an in vitro model of PLEKHM2 knockout (KO) induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to elucidate the potential pathogenic mechanism of PLEKHM2-deficient cardiomyopathy. PLEKHM2-KO hiPSC-CMs developed disease phenotypes with reduced contractility and impaired calcium handling. Subsequent RNA sequencing (RNA-seq) analysis revealed altered expression of genes involved in mitochondrial function, autophagy and apoptosis in PLEKHM2-KO hiPSC-CMs. Further molecular experiments confirmed PLEKHM2 deficiency impaired autophagy and resulted in accumulation of damaged mitochondria, which triggered increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potential (Δψm). Importantly, the elevated ROS levels caused oxidative stress-induced damage to nearby healthy mitochondria, resulting in extensive Δψm destabilization, and ultimately leading to impaired mitochondrial function and myocardial contractility. Moreover, ROS inhibition attenuated oxidative stress-induced mitochondrial damage, thereby partially rescued PLEKHM2 deficiency-induced disease phenotypes. Remarkably, PLEKHM2-WT overexpression restored autophagic flux and rescued mitochondrial function and myocardial contractility in PLEKHM2-KO hiPSC-CMs. Taken together, these results suggested that impaired mitochondrial clearance and increased ROS levels play important roles in PLEKHM2-deficient cardiomyopathy, and PLEKHM2-WT overexpression can improve mitochondrial function and rescue PLEKHM2-deficient cardiomyopathy.

3.
Cell Commun Signal ; 22(1): 73, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279161

RESUMO

The functions of macrophages are governed by distinct polarization phenotypes, which can be categorized as either anti-tumor/M1 type or pro-tumor/M2 type. Glycosylation is known to play a crucial role in various cellular processes, but its influence on macrophage polarization is not well-studied. In this study, we observed a significant decrease in bisecting GlcNAc during M0-M1 polarization, and impaired bisecting GlcNAc was found to drive M0-M1 polarization. Using a glycoproteomics strategy, we identified Lgals3bp as a specific glycoprotein carrying bisecting GlcNAc. A high level of bisecting GlcNAc modification facilitated the degradation of Lgals3bp, while a low level of bisecting GlcNAc stabilized Lgals3bp. Elevated levels of Lgals3bp promoted M1 polarization through the activation of the NF-кB pathway. Conversely, the activated NF-кB pathway significantly repressed the transcription of MGAT3, leading to reduced levels of bisecting GlcNAc modification on Lgals3bp. Overall, our study highlights the impact of glycosylation on macrophage polarization and suggests the potential of engineered macrophages via glycosylated modification. Video Abstract.


Assuntos
Macrófagos , NF-kappa B , Glicosilação
4.
Cell Calcium ; 117: 102822, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101154

RESUMO

Hypertrophic cardiomyopathy (HCM), the most common inherited heart disease, is frequently caused by mutations in the ß-cardiac myosin heavy chain gene (MYH7). Abnormal calcium handling and diastolic dysfunction are archetypical features of HCM caused by MYH7 gene mutations. However, the mechanism of how MYH7 mutations leads to these features remains unclear, which inhibits the development of effective therapies. Initially, cardiomyocytes were generated from induced pluripotent stem cells from an eight-year-old girl diagnosed with HCM carrying a MYH7(C.1063 G>A) heterozygous mutation(mutant-iPSC-CMs) and mutation-corrected isogenic iPSCs(control-iPSC-CMs) in the present study. Next, we compared phenotype of mutant-iPSC-CMs to that of control-iPSC-CMs, by assessing their morphology, hypertrophy-related genes expression, calcium handling, diastolic function and myofilament calcium sensitivity at days 15 and 40 respectively. Finally, to better understand increased myofilament Ca2+ sensitivity as a central mechanism of central pathogenicity in HCM, inhibition of calcium sensitivity with mavacamten can improveed cardiomyocyte hypertrophy. Mutant-iPSC-CMs exhibited enlarged areas, increased sarcomere disarray, enhanced expression of hypertrophy-related genes proteins, abnormal calcium handling, diastolic dysfunction and increased myofilament calcium sensitivity at day 40, but only significant increase in calcium sensitivity and mild diastolic dysfunction at day 15. Increased calcium sensitivity by levosimendan aggravates cardiomyocyte hypertrophy phenotypes such as expression of hypertrophy-related genes, abnormal calcium handling and diastolic dysfunction, while inhibition of calcium sensitivity significantly improves cardiomyocyte hypertrophy phenotypes in mutant-iPSC-CMs, suggesting increased myofilament calcium sensitivity is the primary mechanisms for MYH7 mutations pathogenesis. Our studies have uncovered a pathogenic mechanism of HCM caused by MYH7 gene mutations through which enhanced myofilament calcium sensitivity aggravates abnormal calcium handling and diastolic dysfunction. Correction of the myofilament calcium sensitivity was found to be an effective method for treating the development of HCM phenotype in vitro.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Criança , Feminino , Humanos , Cálcio/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Hipertrofia/metabolismo , Hipertrofia/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Miofibrilas/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo
5.
Water Sci Technol ; 87(8): 1819-1831, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37119157

RESUMO

In this study, microalgae-bacteria (MB) systems using saline conditions (3 and 5% salinity) were built in order to use waste-activated sludge (AS) as raw material for cultivating lipid-rich microalgae. Algae were observed to be flourishing in 60 days of operation, which totally used the N and P released from the sludge biomass. A prominent improvement of lipid content in MB consortia was obtained under algae growth and salinity stimulation, which occupied 119-136 mg/g-SS rather than a low content of 12.1 mg/g-SS in AS. Lipid enrichment also brought a 3.1-3.3 times total heat release (THR) in the MB biomass. The marine spherical algae Porphyridium, as well as filamentous Geitlerinema, Nodularia, Leptolyngbya were found to be the main lipid producers and self-flocculated to 23.0% (R1) and 33.5% (R2) volume under the effect of residue EPS. This study had a big meaning in not only waste sludge reduction but also in manufacturing useful bioenergy products.


Assuntos
Cianobactérias , Microalgas , Esgotos/química , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Biomassa , Lipídeos/química
6.
Bioresour Technol ; 354: 127182, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35439564

RESUMO

In this study modified microalgal-bacterial granular sludge (MBGS) was constructed and employed to compare the performance for treating 1%-5% saline wastewater with aerobic granular sludge (AGS). Filamentous algae were found to flourish at 1% salinity when nutrients were temporarily restricted to low level (COD 0, N 10 mg/L, P 0.5 mg/L). A significant improvement of granule stability was detected as the integrity coefficients of MBGS was only 0.12-0.24 rather than 0.19-0.48 of AGS under 1%-5% salinities, which reduced the risk of particle disintegration. Filamentous algae including Leptolyngbya and Geitlerinema occupied 91.2% of identified algae, and were beneficial for enhancing the biomass content and lipid production to about 1.27-1.37, 3.1-5.0 times than AGS. The MBGS had best nitrogen and phosphorus removal efficiencies of 93.4% and 64.6% at 1% salinity, and showed higher resistance to 3%-5% salinities. This study could provide meaningful information for using this modified MBGS technology in practice.


Assuntos
Microalgas , Esgotos , Aerobiose , Bactérias , Reatores Biológicos/microbiologia , Lipídeos , Nitrogênio/análise , Nutrientes , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias
7.
Stem Cell Res ; 60: 102722, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257994

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common heterogeneous myocardial disease. MYBPC3 variants are the leading cause of HCM. In the present study, a human induced pluripotent stem cell (iPSC) line ZZUNEUi025-A was generated from peripheral blood mononuclear cells of a male HCM patient with c. 772+1G > A in MYBPC3 gene. This cell line expressed pluripotency markers, had normal male karyotype and could differentiate into three germ layers in vitro.


Assuntos
Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Hipertrófica/genética , Proteínas do Citoesqueleto/genética , Heterozigoto , Humanos , Leucócitos Mononucleares , Masculino , Mutação/genética
8.
Nat Commun ; 12(1): 3952, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172740

RESUMO

The recent discovery of ferromagnetism in two-dimensional van der Waals crystals has provoked a surge of interest in the exploration of fundamental spin interaction in reduced dimensions. However, existing material candidates have several limitations, notably lacking intrinsic room-temperature ferromagnetic order and air stability. Here, motivated by the anomalously high Curie temperature observed in bulk diluted magnetic oxides, we demonstrate room-temperature ferromagnetism in Co-doped graphene-like Zinc Oxide, a chemically stable layered material in air, down to single atom thickness. Through the magneto-optic Kerr effect, superconducting quantum interference device and X-ray magnetic circular dichroism measurements, we observe clear evidences of spontaneous magnetization in such exotic material systems at room temperature and above. Transmission electron microscopy and atomic force microscopy results explicitly exclude the existence of metallic Co or cobalt oxides clusters. X-ray characterizations reveal that the substitutional Co atoms form Co2+ states in the graphitic lattice of ZnO. By varying the Co doping level, we observe transitions between paramagnetic, ferromagnetic and less ordered phases due to the interplay between impurity-band-exchange and super-exchange interactions. Our discovery opens another path to 2D ferromagnetism at room temperature with the advantage of exceptional tunability and robustness.

9.
Angew Chem Int Ed Engl ; 56(1): 328-332, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27897364

RESUMO

Precisely engineering the electrical conductivity represents a promising strategy to design efficient catalysts towards oxygen evolution reaction (OER). Here, we demonstrate a versatile partial cation exchange method to fabricate lamellar Ag-CoSe2 nanobelts with controllable conductivity. The electrical conductivity of the materials was significantly enhanced by the addition of Ag+ cations of less than 1.0 %. Moreover, such a trace amount of Ag induced a negligible loss of active sites which was compensated through the effective generation of active sites as shown by the excellent conductivity. Both the enhanced conductivity and the retained active sites contributed to the remarkable electrocatalytic performance of the Ag-CoSe2 nanobelts. Relative to the CoSe2 nanobelts, the as-prepared Ag-CoSe2 nanobelts exhibited a higher current density and a lower Tafel slope towards OER. This strategy represents a rational design of efficient electrocatalysts through finely tuning their electrical conductivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...