Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 618: 259-269, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339962

RESUMO

Carbon aerogels exhibit high porosity, good electrical conductivity, and low thermal conductivity, but their practical applications are greatly hindered by their tedious preparation and inherent structure brittleness. Herein, monolithic carbon aerogels (MCAs) with low density and large size are prepared via a facile sol-gel polymerization of phenolic resin within melamine foam (MF), followed by ambient pressure drying and co-carbonization. During ambient pressure drying process, the MF matrix can deliver supporting force to counteract against the solvent evaporation surface tension, thus inhibiting volume shrinkage and shape deformation. Upon co-carbonization process, the MF matrix and organic aerogel could pyrolyze and shrink cooperatively, which could effectively prevent the brittle fracture of monolith. Therefore, large-sized MCAs (up to 250 × 250 × 20 mm) with low densities of 0.12-0.22 g·cm-3 are obtained. The as-obtained MCAs possess high compressive strength (2.50 MPa), ultra-low thermal conductivity (0.051 W·m-1·K-1 at 25 °C and 0.111 W·m-1·K-1 at 800 °C), and high-volume organic absorption capability (77.3-88.0%, V/V). This facile and low-cost method for the fabrication of large-sized monolithic carbon aerogels with excellent properties could envision enormous potential for high-temperature thermal insulation and organics absorption.

2.
J Colloid Interface Sci ; 609: 667-675, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34823850

RESUMO

Carbon aerogels with nanoporous structure are attractive for thermal insulation under extreme conditions, but their practical applications are usually plagued by the inherent brittleness and easy-oxidation characteristic at high temperature. Herein, silica-modified carbon aerogels (SCAs) with extraordinarily high strength are prepared via a facile sol-gel polymerization of phenolic resin and siloxane, followed by ambient pressure drying and carbonization. The resulting SCAs possess medium-high density of ∼0.5 g·cm-3 and mesoporous structure with the mean pore size of 33 nm. During carbonization process, the siloxane could be gradually transformed into the amorphous SiO2 particles and crystalline SiC particles, which are coated on the surface of carbon nanoparticle and consequently improve the oxidation-resistance of carbon aerogels. Due to the density-porosity trade-off, the SCAs have high compressive strength of 10.0 MPa and satisfied thermal conductivities of 0.118 W·m-1·K-1 at 25 °C and 0.263 W·m-1·K-1 at 1000 °C. Furthermore, needled carbon fiber-reinforced SCAs (CF-SCAs) with ultrahigh compressive strength of 210.5 MPa are prepared, which exhibit good thermal conductivities of 0.207 W·m-1·K-1 at 25 °C and 0.407 W·m-1·K-1 at 1000 °C. The ultrahigh mechanical strength, good oxidation-resistance, good thermal insulation as well as the facile preparation make the SACs great promising in high-temperature insulations especially under harsh conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA