Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 75(12): 1569-1580, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37862582

RESUMO

OBJECTIVES: This study addresses the bioavailability challenges associated with oral nicotinamide mononucleotide (NMN) administration by introducing an innovative NMN formulation incorporated with hydroxyapatite (NMN-HAP). METHODS: The NMN-HAP was developed using a wet chemical precipitation and physical adsorption method. To assess its superiority over conventional free NMN, we examined NMN, nicotinamide adenine dinucleotide (NAD+), and nicotinamide riboside (NR) levels in mouse plasma and tissues following oral administration of NMN-HAP. KEY FINDINGS: NMN-HAP nanoparticles demonstrated a rod-shaped morphology, with an average size of ~50 nm, along with encapsulation efficiency and drug loading capacity exceeding 40%. In vitro, drug release results indicated that NMN-HAP exhibited significantly lower release compared with free NMN. In vivo studies showed that NMN-HAP extended circulation time, improved bioavailability compared with free NMN, and elevated plasma levels of NMN, NAD+, and NR. Moreover, NMN-HAP administration displayed tissue-specific distribution with a substantial accumulation of NMN, NAD+, and NR in the brain and liver. CONCLUSION: NMN-HAP represents an ideal formulation for enhancing NMN bioavailability, enabling tissue-specific delivery, and ultimately elevating in vivo NAD+ levels. Considering HAP's biocompatible nature and versatile characteristics, we anticipate that this system has significant potential for various future applications.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Disponibilidade Biológica , Encéfalo/metabolismo , Hidroxiapatitas
2.
Int J Biol Macromol ; 229: 885-895, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36603719

RESUMO

Ganoderma lucidum (Ganoderma) is a famous Chinese herbal medicine which has been used clinically for thousands of years in China. Despite numerous studies on triterpenes and polysaccharides, the bioactivity of RNAs abundant in Ganoderma remains unknown. Here, based on LC-MS techniques, dihydrouracil, 5-methyluridine (m5U) and pseudouridine were identified at position 19, 52 and 53 of a new tRNAIle(GAU) which was isolated as the most abundant tRNA species in Ganoderma, and is the first purified tRNA from fungus. Cytotoxic screening of tRNA-half (t-half) and tRNA fragment (tRF) derived from this tRNA, as well as their mimics (t-half or tRF as antisense strand), demonstrated that the double-stranded form, i.e., tRF and t-halve mimics, exhibited stronger cytotoxicity than their single-stranded form, and the cytotoxicity of t-half mimic is significantly stronger than that of tRF mimic. Notably, the cytotoxicity of 3'-t-half mimic is not only much more potent than that of taxol, but also is much more potent than that of ganoderic acids, the major bioactive components in Ganoderma. Furthermore, 3'-t-half mimic_M2 (m5U modified) exhibited significantly stronger cytotoxicity than unmodified 3'-t-half mimic, which is consistent with the computational simulation showing that m5U modification enhances the stability of the tertiary structure of 3'-t-half mimic. Overall, the present study not only indicates t-halves are bioactive components in Ganoderma which should not be neglected, but also reveals an important role of post-transcriptional modification on tRNA in its fragments' cytotoxicity against cancer cells, which benefits the design and development of RNAi drugs from natural resource.


Assuntos
Antineoplásicos , Ganoderma , Neoplasias , Reishi , Triterpenos , Reishi/química , Triterpenos/química , Ganoderma/química , Cromatografia Líquida , Antineoplásicos/farmacologia , RNA de Transferência/genética
3.
Mol Ther Nucleic Acids ; 29: 672-688, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36090756

RESUMO

Traditional Chinese medicines (TCMs) have been widely used for treating ischemic heart disease (IHD), and secondary metabolites are generally regarded as their pharmacologically active components. However, the effects of nucleic acids in TCMs remain unclear. We reported for the first time that a 22-mer double-strand RNA consisting of HC83 (a tRNA-derived fragment [tRF] from the 3' end of tRNAGln(UUG) of ginseng) and its complementary sequence significantly promoted H9c2 cell survival after hypoxia/reoxygenation (H/R) in vitro. HC83_mimic could also significantly improve cardiac function by maintaining both cytoskeleton integrity and mitochondrial function of cardiomyocytes. Further in vivo investigations revealed that HC83_mimic is more potent than metoprolol by >500-fold against myocardial ischemia/reperfusion (MI/R) injury. In-depth studies revealed that HC83 directly downregulated a lncRNA known as myocardial infarction-associated transcript (MIAT) that led to a subsequent upregulation of VEGFA expression. These findings provided the first evidence that TCM-derived tRFs can exert miRNA-like functions in mammalian systems, therefore supporting the idea that TCM-derived tRFs are promising RNA drug candidates shown to have extraordinarily potent effects. In summary, this study provides a novel strategy not only for discovering pharmacologically active tRFs from TCMs but also for efficiently exploring new therapeutic targets for various diseases.

4.
mSystems ; 7(2): e0016422, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35400173

RESUMO

tRNAs purified from non-pathogenic Escherichia coli strains (NPECSs) possess cytotoxic properties on colorectal cancer cells. In the present study, the bioactivity of tRNA halves and tRNA fragments (tRFs) derived from NPECSs are investigated for their anticancer potential. Both the tRNA halves and tRF mimics studied exhibited significant cytotoxicity on colorectal cancer cells, with the latter being more effective, suggesting that tRFs may be important contributors to the bioactivities of tRNAs derived from the gut microbiota. Through high-throughput screening, the EC83 mimic, a double-strand RNA with a 22-nucleotide (nt) 5'-tRF derived from tRNA-Leu(CAA) as an antisense chain, was identified as the one with the highest potency (50% inhibitory concentration [IC50] = 52 nM). Structure-activity investigations revealed that 2'-O-methylation of the ribose of guanosine (Gm) may enhance the cytotoxic effects of the EC83 mimic via increasing the stability of its tertiary structure, which is consistent with the results of in vivo investigations showing that the EC83-M2 mimic (Gm modified) exhibited stronger antitumor activity against both HCT-8 and LoVo xenografts. Consistently, 4-thiouridine modification does not. This provides the first evidence that the bioactivity of tRF mimics would be impacted by chemical modifications. Furthermore, the present study provides the first evidence to suggest that novel tRNA fragments derived from the gut microbiota may possess anticancer properties and have the potential to be potent and selective therapeutic molecules. IMPORTANCE While the gut microbiota has been increasingly recognized to be of vital importance for human health and disease, the current literature shows that there is a lack of attention given to non-pathogenic Escherichia coli strains. Moreover, the biological activities of tRNA fragments (tRFs) derived from bacteria have rarely been investigated. The findings from this study revealed tRFs as a new class of bioactive constituents derived from gut microorganisms, suggesting that studies on biological functional molecules in the intestinal microbiota should not neglect tRFs. Research on tRFs would play an important role in the biological research of gut microorganisms, including bacterium-bacterium interactions, the gut-brain axis, and the gut-liver axis, etc. Furthermore, the guidance on the rational design of tRF therapeutics provided in this study indicates that further investigations should pay more attention to these therapeutics from probiotics. The innovative drug research of tRFs as potent druggable RNA molecules derived from intestinal microorganisms would open a new area in biomedical sciences.


Assuntos
Neoplasias Colorretais , RNA de Transferência , Humanos , RNA de Transferência/química , Escherichia coli/genética , Relação Estrutura-Atividade
5.
Mol Ther Nucleic Acids ; 27: 718-732, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35317282

RESUMO

Drug discovery from plants usually focuses on small molecules rather than such biological macromolecules as RNAs. Although plant transfer RNA (tRNA)-derived fragment (tRF) has been associated with the developmental and defense mechanisms in plants, its regulatory role in mammals remains unclear. By employing a novel reverse small interfering RNA (siRNA) screening strategy, we show that a tRF mimic (antisense derived from the 5' end of tRNAHis(GUG) of Chinese yew) exhibits comparable anti-cancer activity with that of taxol on ovarian cancer A2780 cells, with a 16-fold lower dosage than that of taxol. A dual-luciferase reporter assay revealed that tRF-T11 directly targets the 3' UTR of oncogene TRPA1 mRNA. Furthermore, an Argonaute-RNA immunoprecipitation (AGO-RIP) assay demonstrated that tRF-T11 can interact with AGO2 to suppress TRPA1 via an RNAi pathway. This study uncovers a new role of plant-derived tRFs in regulating endogenous genes. This holds great promise for exploiting novel RNA drugs derived from nature and sheds light on the discovery of unknown molecular targets of therapeutics.

6.
Stem Cell Res Ther ; 12(1): 119, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579362

RESUMO

BACKGROUND: Tumor-associated antigens (TAAs) can be targeted in cancer therapy. We previously identified a monoclonal antibody (mAb) 12C7, which presented anti-tumor activity in lung cancer stem cells (LCSCs). Here, we aimed to identify the target antigen for 12C7 and confirm its role in LCSCs. METHODS: Immunofluorescence was used for antigen localization. After targeted antigen purification by electrophoresis and immunoblot, the antigen was identified by LC-MALDI-TOF/TOF mass spectrometry, immunofluorescence, and immunoprecipitation. The overexpression or silence of ENO1 was induced by lentiviral transduction. Self-renewal, growth, and invasion of LCSCs were evaluated by sphere formation, colony formation, and invasion assay, respectively. High-throughput transcriptome sequencing (RNA-seq) and bioinformatics analysis were performed to analyze downstream targets and pathways of targeted antigen. RESULTS: Targeted antigen showed a surface antigen expression pattern, and the 43-55 kDa protein band was identified as α-enolase (ENO1). Self-renewal, growth, and invasion abilities of LCSCs were remarkably inhibited by ENO1 downregulation, while enhanced by ENO1 upregulation. RNA-seq and bioinformatics analysis eventually screened 4 self-renewal-related and 6 invasion-related differentially expressed genes. GSEA analysis and qRT-PCR verified that ENO1 regulated self-renewal, invasion-related genes, and pathways. KEGG pathway analysis and immunoblot demonstrated that ENO1 inactivated AMPK pathway and activated mTOR pathway in LCSCs. CONCLUSIONS: ENO1 is identified as a targeted antigen of mAb 12C7 and plays a pivotal role in facilitating self-renewal, growth, and invasion of LCSCs. These findings provide a potent therapeutic target for the stem cell therapy for lung cancer and have potential to improve the anti-tumor activity of 12C7.


Assuntos
Neoplasias , Fosfopiruvato Hidratase , Proteínas Quinases Ativadas por AMP , Anticorpos Monoclonais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Pulmão , Células-Tronco Neoplásicas , Fenótipo , Fosfopiruvato Hidratase/genética , Serina-Treonina Quinases TOR/genética
7.
Anal Chem ; 93(3): 1423-1432, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33382261

RESUMO

Transfer RNAs (tRNAs) are the most heavily modified RNA species. Liquid chromatography coupled with mass spectrometry (LC-MS/MS) is a powerful tool for characterizing tRNA modifications, which involves pretreating tRNAs with base-specific ribonucleases to produce smaller oligonucleotides amenable to MS. However, the quality and quantity of products from base-specific digestions are severely impacted by the base composition of tRNAs. This often leads to a loss of sequence information. Here, we report a method for the full-range profiling of tRNA modifications at single-base resolution by combining site-specific RNase H digestion with the LC-MS/MS and RNA-seq techniques. The key steps were designed to generate high-quality products of optimal lengths and ionization properties. A linear correlation between collision energies and the m/z of oligonucleotides significantly improved the information content of collision-induced dissociation (CID) spectra. False positives were eliminated by up to 95% using novel inclusion criteria for collecting a census of modifications. This method is illustrated by the mapping of mouse mitochondrial tRNAHis(GUG) and tRNAVal(UAC), which were hitherto not investigated. The identities and locations of the five species of modifications on these tRNAs were fully characterized. This approach is universally applicable to any tRNA species and provides an experimentally realizable pathway to the de novo sequencing of post-transcriptionally modified tRNAs with high sequence coverage.


Assuntos
RNA de Transferência/metabolismo , Animais , Cromatografia Líquida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/química , Mitocôndrias/metabolismo , RNA de Transferência/análise , Espectrometria de Massas em Tandem
8.
Int J Biol Macromol ; 142: 355-365, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593735

RESUMO

Transfer RNAs (tRNAs) are the most abundant class in small non-coding RNAs which have been proved to be pharmacologically active. In the present study, we evaluated the potential anticancer activities of tRNAs from Escherichia coli MRE 600 to investigate the relationship between non-pathogenic Escherichia coli strain and colorectal cancer. To purify individual tRNAs, we firstly developed a two-dimensional liquid chromatography (2D-LC) and successfully obtained two pure tRNAs. Nuclease mediated base-specific digestions coupled with UHPLC-MS/MS techniques led to an identification of these two tRNAs as tRNA-Val(UAC) and tRNA-Leu(CAG) with typical cloverleaf-like secondary structure. MTT assay demonstrated that both tRNA-1 and tRNA-2 exhibit strong cytotoxicity with IC50 of 113.0 nM and 124.8 nM on HCT-8 cells in a dose-dependent manner. Further clonogenic assay revealed that the purified tRNAs exhibit significant inhibition in colony formation with survival percentage of 79.0 ±â€¯1.6 and 71.2 ±â€¯2.2 at the concentration of 100 nM. These findings provided evidences of anticancer activities of tRNAs from non-pathogenic Escherichia coli strain, indicating that the pharmacological effects of these neglected biomacromolecules from microorganisms should be emphasized. This study put new insights into the therapeutic effects of intestinal microorganism on human diseases, therefore broadened our knowledge of the biological functions of gut microbiota.


Assuntos
Escherichia coli/genética , RNA Bacteriano/química , RNA Bacteriano/isolamento & purificação , RNA de Transferência/química , RNA de Transferência/isolamento & purificação , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Humanos , Conformação de Ácido Nucleico , RNA Bacteriano/genética , RNA de Transferência/genética , Espectrometria de Massas em Tandem
9.
Dis Markers ; 2019: 9436047, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481985

RESUMO

BACKGROUND: MCOLN1 (mucolipin subfamily, member 1) was first identified as an autophagic regulator, which was essential for efficient fusion of both autophagosomes and late endosomes with lysosomes. This study is aimed at investigating the role of MCOLN1 in the development of pancreatic ductal adenocarcinoma (PDAC). METHODS: Immunohistochemistry (IHC) assay was conducted to evaluate the expression level of MCOLN1 in 82 human PDAC tumor tissues. Overall survival (OS) and recurrence-free survival (RFS) analysis was performed to assess the prognosis of patients. Colony formation and MTT assays [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] were performed to measure the proliferation capacity of tumor cells. The expression level of related genes was measured by RT-PCR (reverse transcription polymerase chain reaction) and western blot assays. The animal model was used to examine the effects of indicated protein on tumorigenesis in vivo. RESULTS: The results of IHC showed that a high level of MCOLN1 expression was associated with the poor clinical characteristics of PDAC patients. OS and RFS were significantly worse in patients with high MCOLN1 expression. Silencing of MCOLN1 dramatically blocked the proliferation of PDAC cells. Mechanism studies confirmed that knockdown of MCOLN1 decreased the expression of Ki67 and PCNA (proliferating cell nuclear antigen), two markers of cell proliferation. In vivo, MCOILN1 depletion reduced the formation and growth of tumors in mice. CONCLUSION: The high level of MCOLN1 expression was associated with poor clinical outcomes of PDAC patients. MCOLN1 ablation could inhibit PDAC proliferation of both in vitro and in vivo, which provide a new insight and novel therapeutic target for the treatment of PDAC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Idoso , Animais , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Canais de Potencial de Receptor Transitório/genética
10.
J Sep Sci ; 38(13): 2201-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25929247

RESUMO

A rapid method based on pressurized liquid extraction followed by high-performance liquid chromatography coupled with evaporative light scattering detection was firstly developed for the quantitative analysis of two bioactive triterpenoids (acankoreoside A and acankoreagenin) in the leaves of Schefflera octophylla and Schefflera actinophylla. The analysis was performed on an Agilent Zorbax SB-Aq column (4.6 × 50 mm, 3.5 µm) with gradient elution of 0.1% formic acid and acetonitrile. Calibration curves of two analytes showed good linearity (R(2) > 0.9990) within the tested ranges. This novel method is simple, rapid and accurate, and the results of quantification showed that contents of each investigated compound is significant high in natural S. octophylla (6.36-14.83%), which indicated that natural S. octophylla as potential medicinal resource. Furthermore, hierarchical clustering analysis based on the typical peaks of acankoreoside A and acankoreagenin from the 17 tested samples showed that natural and cultured Schefflera species were in different clusters, which could provide a means of discriminating between Schefflera species from different origins. Thus, acankoreoside A and acankoreagnin could be selected markers for quality control of S. octophylla and S. actinophylla.


Assuntos
Araliaceae/química , Cromatografia Líquida de Alta Pressão/métodos , Glicosídeos/análise , Folhas de Planta/química , Triterpenos/análise , Calibragem , Análise por Conglomerados , Luz , Limite de Detecção , Reprodutibilidade dos Testes , Espalhamento de Radiação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...