Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37237762

RESUMO

The Asian elephant (Elephas maximus) is a flagship species of tropical rainforests, and it has generated much concern. In this case, the gut bacterial communities of captive and wild Asian elephants are particularly noteworthy. We aim to compare the differences in bacterial diversity and antibiotic resistance gene (ARG) subtypes in fecal samples of Asian elephants from different habitats, which may affect host health. Analyses reveal that differences in the dominant species of gut bacteria between captive and wild Asian elephants may result in significant differences in ARGs. Network analysis of bacterial communities in captive Asian elephants has identified potentially pathogenic species. Many negative correlations in network analysis suggest that different food sources may lead to differences in bacterial communities and ARGs. Results also indicate that the ARG levels in local captive breeding of Asian elephants are close to those of the wild type. However, we found that local captive elephants carry fewer ARG types than their wild counterparts. This study reveals the profile and relationship between bacterial communities and ARGs in different sources of Asian elephant feces, providing primary data for captive breeding and rescuing wild Asian elephants.

2.
Front Plant Sci ; 14: 1133643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909410

RESUMO

Development of high yield rice varieties is critical to ensuring global food security. However, the emission of greenhouse gases (GHG) such as Methane (CH4) and Nitrous oxide (N2O) from paddy fields threatens environmental sustainability. In this study, we selected overexpressed high-affinity nitrate transporters (NRT2.3 along with their partner protein NAR2.1) cultivars, which are effective nitrogen use efficient transgenic lines pOsNAR2.1: OsNAR2.1 (Ox2) and p35S:OsNRT2.3b (O8). We used high (270 kg N/ha) and low (90 kg N/ha) nitrogen (N) fertilizers in paddy fields to evaluate morphophysiological traits, including GHG emission. We found that Ox2 and O8 reduced CH4 emissions by 40% and 60%, respectively, compared to their wild type (WT). During growth stages, there was no consistent N2O discharge pattern between WT and transgenics (Ox2, O8) in low and high N application. However, total cumulative N2O in a cropping season reduced in O8 and increased in Ox2 cultivars, compared to WT. Root aerenchyma formation reduced by 30-60% in transgenic lines. Methanogens like mcrA in low and high N were also reduced by up to 50% from rhizosphere of Ox2 and O8. However, the nitrifying bacterial population such as nosZ reduced in both transgenics significantly, but nirK and nirS did not show a consistent variation. The high yield of transgenic rice with limited aerenchyma mitigates the discharge of CH4 and N2O by reducing root exudates that provide substrates for GHG. Our results improve understanding for breeders to serve the purpose of sustainable development.

3.
Front Microbiol ; 13: 829152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422775

RESUMO

Conservation tillage is an advanced agricultural technology that seeks to minimize soil disturbance by reducing, or even eliminating tillage. Straw or stubble mulching in conservation tillage systems help to increase crop yield, maintain biodiversity and increase levels of exogenous nutrients, all of which may influence the structure of fungal communities in the soil. Currently, however, the assembly processes and co-occurrence patterns of fungal sub-communities remain unknown. In this paper, we investigated the effects of no-tillage and straw mulching on the composition, assembly process, and co-occurrence patterns of soil fungal sub-communities in a long-term experimental plot (15 years). The results revealed that combine straw mulching with no-tillage significantly increased the richness of fungi but not their diversity. Differential abundance analysis and principal component analysis (PCA) indicated that tillage management had a greater effect on the fungal communities of abundant and intermediate taxa than on the rare taxa. Available phosphorus (AP) and total nitrogen (TN) were the major determinants of fungal sub-communities in NT treatment. The abundant fungal sub-communities were assembled by deterministic processes under medium strength selection, while strong conservation tillage strength shifts the abundant sub-community assembly process from deterministic to stochastic. Overall, the investigation of the ecological network indicated that no-tillage and straw mulching practices decreased the complexity of the abundant and intermediate fungal networks, while not significantly influencing rare fungal networks. These findings refine our knowledge of the response of fungal sub-communities to conservation tillage management techniques and provide new insights into understanding fungal sub-community assembly.

4.
Can J Microbiol ; 67(4): 310-322, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33022188

RESUMO

To understand the diversities of diazotrophs and denitrifiers in red paddy soil under long-term fertilization conditions, nifH, nirK, and nosZ libraries were constructed by PCR-RFLP. nirK gene diversity proved to be lower than that of nosZ and nifH, and nirK and nosZ genes were more sensitive to different fertilization treatments than the nifH gene was. The 3 libraries were dominated by diverse microbes, including the Alpha, Beta, Gamma, and Delta subclasses of the Proteobacteria. Long-term addition of urea with straw mulch and azophoska increased the abundance of nonsymbiotic diazotrophs, which indicated that nonsymbiotic diazotrophs were responsible for the majority of the nitrogen-fixing ability in paddy soil. In addition, a potential link between nifH and nosZ was found due to the existence of nitrogen fixers, such as Bradyrhizobium and Ralstonia, in the nosZ library. The main chemical factors affecting the 3 genes were identified: pH was the most important factor of the nifH community; the nirK gene was more affected by pH and organic matter; available potassium and the carbon-to-nitrogen ratio significantly influenced the community structure of the nosZ gene.


Assuntos
Fertilizantes/análise , Genes Bacterianos , Nitrogênio/análise , Microbiologia do Solo , China , Desnitrificação/genética , Variação Genética , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...