Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(30): 34571-34582, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867970

RESUMO

Dual γ/neutron radiation sensors are a critical component of the nuclear security mission to prevent the proliferation of a special nuclear material (SNM). While high-performing semiconductors such as high purity germanium (HPGe) and CdZnTe (CZT) already exist in the nuclear security enterprise, their high cost and/or logistical burdens make widespread deployment difficult to achieve. Metal lead halide perovskites (MHPs) have attracted interest in recent years to address this challenge. In particular, methylammonium lead tribromide (CH3NH3PbBr3, MAPbBr3, or MAPB) has been widely evaluated for its radiation sensing capabilities. While previous studies have demonstrated low-energy X-ray and α particle sensing of MAPB-based detectors and several studies discuss the potential for γ ray sensing, neutron sensing of this material has been rarely explored. Here, we explore the incorporation of lithium in the form of LiCl into the MAPB structure to add thermal neutron sensitivity. Characterizations of the lithium-doped MAPB crystals demonstrate that quality growths are achievable with single crystals that exhibit high crystallinity, no phase change, and high macroscopic bulk quality. Finally, we report on the first demonstrated γ ray and thermal neutron sensing based on lithium-doped MAPB single crystals, which is a significant milestone in the development of 3D dual γ/neutron MHP sensors.

2.
Adv Mater ; 34(13): e2106498, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35106838

RESUMO

Polycrystalline perovskite film-based X-ray detector is an appealing technology for assembling large scale imager by printing methods. However, thick crystalline layer without trap and solvent residual is challenging to fabricate. Here, the authors report a solution method to produce high quality quasi-2D perovskite crystalline layers and detectors that are suitable for X-ray imaging. By introducing n-butylamine iodide into methylammonium lead iodide precursor and coating at elevated temperatures, compact and crystalline layers with exceptional uniformity are obtained on both rigid and flexible substrates. Photodiodes built with the quasi-2D layers exhibit a low dark current and stable operation under constant electrical field over 96 h in dark, and over 15 h under X-ray irradiation. The detector responds sensitively under X-ray, delivering a high sensitivity of 1214 µC Gyair -1  cm-2 and a sensitivity gain is observed when operated under higher fields. Finally, high resolution images are demonstrated using a single pixel device that can resolve 80-200 µm features. This work paves the path for printable direct conversion X-ray imager development.

3.
Nat Commun ; 12(1): 5258, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489444

RESUMO

X-ray detection limit and sensitivity are important figure of merits for perovskite X-ray detectors, but literatures lack a valid mathematic expression for determining the lower limit of detection for a perovskite X-ray detector. In this work, we present a thorough analysis and new method for X-ray detection limit determination based on a statistical model that correlates the dark current and the X-ray induced photocurrent with the detection limit. The detection limit can be calculated through the measurement of dark current and sensitivity with an easy-to-follow practice. Alternatively, the detection limit may also be obtained by the measurement of dark current and photocurrent when repeatedly lowering the X-ray dose rate. While the material quality is critical, we show that the device architecture and working mode also have a significant influence on the sensitivity and the detection limit. Our work establishes a fair comparison metrics for material and detector development.

4.
Angew Chem Int Ed Engl ; 53(36): 9498-502, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25044527

RESUMO

A real-time quantification of Li transport using a nondestructive neutron method to measure the Li distribution upon charge and discharge in a Li-ion cell is reported. By using in situ neutron depth profiling (NDP), we probed the onset of lithiation in a high-capacity Sn anode and visualized the enrichment of Li atoms on the surface followed by their propagation into the bulk. The delithiation process shows the removal of Li near the surface, which leads to a decreased coulombic efficiency, likely because of trapped Li within the intermetallic material. The developed in situ NDP provides exceptional sensitivity in the temporal and spatial measurement of Li transport within the battery material. This diagnostic tool opens up possibilities to understand rates of Li transport and their distribution to guide materials development for efficient storage mechanisms. Our observations provide important mechanistic insights for the design of advanced battery materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA