Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 466, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741045

RESUMO

BACKGROUND: Protein-protein interactions (PPIs) hold significant importance in biology, with precise PPI prediction as a pivotal factor in comprehending cellular processes and facilitating drug design. However, experimental determination of PPIs is laborious, time-consuming, and often constrained by technical limitations. METHODS: We introduce a new node representation method based on initial information fusion, called FFANE, which amalgamates PPI networks and protein sequence data to enhance the precision of PPIs' prediction. A Gaussian kernel similarity matrix is initially established by leveraging protein structural resemblances. Concurrently, protein sequence similarities are gauged using the Levenshtein distance, enabling the capture of diverse protein attributes. Subsequently, to construct an initial information matrix, these two feature matrices are merged by employing weighted fusion to achieve an organic amalgamation of structural and sequence details. To gain a more profound understanding of the amalgamated features, a Stacked Autoencoder (SAE) is employed for encoding learning, thereby yielding more representative feature representations. Ultimately, classification models are trained to predict PPIs by using the well-learned fusion feature. RESULTS: When employing 5-fold cross-validation experiments on SVM, our proposed method achieved average accuracies of 94.28%, 97.69%, and 84.05% in terms of Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori datasets, respectively. CONCLUSION: Experimental findings across various authentic datasets validate the efficacy and superiority of this fusion feature representation approach, underscoring its potential value in bioinformatics.


Assuntos
Biologia Computacional , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Biologia Computacional/métodos , Algoritmos , Helicobacter pylori/metabolismo , Helicobacter pylori/genética , Máquina de Vetores de Suporte , Proteínas/metabolismo , Proteínas/química , Humanos , Mapas de Interação de Proteínas , Bases de Dados de Proteínas
2.
BMC Bioinformatics ; 24(1): 188, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158823

RESUMO

BACKGROUND: The limited knowledge of miRNA-lncRNA interactions is considered as an obstruction of revealing the regulatory mechanism. Accumulating evidence on Human diseases indicates that the modulation of gene expression has a great relationship with the interactions between miRNAs and lncRNAs. However, such interaction validation via crosslinking-immunoprecipitation and high-throughput sequencing (CLIP-seq) experiments that inevitably costs too much money and time but with unsatisfactory results. Therefore, more and more computational prediction tools have been developed to offer many reliable candidates for a better design of further bio-experiments. METHODS: In this work, we proposed a novel link prediction model based on Gaussian kernel-based method and linear optimization algorithm for inferring miRNA-lncRNA interactions (GKLOMLI). Given an observed miRNA-lncRNA interaction network, the Gaussian kernel-based method was employed to output two similarity matrixes of miRNAs and lncRNAs. Based on the integrated matrix combined with similarity matrixes and the observed interaction network, a linear optimization-based link prediction model was trained for inferring miRNA-lncRNA interactions. RESULTS: To evaluate the performance of our proposed method, k-fold cross-validation (CV) and leave-one-out CV were implemented, in which each CV experiment was carried out 100 times on a training set generated randomly. The high area under the curves (AUCs) at 0.8623 ± 0.0027 (2-fold CV), 0.9053 ± 0.0017 (5-fold CV), 0.9151 ± 0.0013 (10-fold CV), and 0.9236 (LOO-CV), illustrated the precision and reliability of our proposed method. CONCLUSION: GKLOMLI with high performance is anticipated to be used to reveal underlying interactions between miRNA and their target lncRNAs, and deciphers the potential mechanisms of the complex diseases.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Projetos de Pesquisa , Algoritmos , MicroRNAs/genética
3.
ACS Omega ; 5(28): 17022-17032, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715187

RESUMO

Analysis of miRNA-target mRNA interaction (MTI) is of crucial significance in discovering new target candidates for miRNAs. However, the biological experiments for identifying MTIs have a high false positive rate and are high-priced, time-consuming, and arduous. It is an urgent task to develop effective computational approaches to enhance the investigation of miRNA-target mRNA relationships. In this study, a novel method called MIPDH is developed for miRNA-mRNA interaction prediction by using DeepWalk on a heterogeneous network. More specifically, MIPDH extracts two kinds of features, in which a biological behavior feature is learned using a network embedding algorithm on a constructed heterogeneous network derived from 17 kinds of associations among drug, disease, and 6 kinds of biomolecules, and the attribute feature is learned using the k-mer method on sequences of miRNAs and target mRNAs. Then, a random forest classifier is trained on the features combined with the biological behavior feature and attribute feature. When implementing a 5-fold cross-validation experiment, MIPDH achieved an average accuracy, sensitivity, specificity and AUC of 75.85, 74.37, 77.33%, and 0.8044, respectively. To further evaluate the performance of MIPDH, other classifiers and feature descriptors are conducted for comparisons. MIPDH can achieve a better performance. Additionally, case studies on hsa-miR-106b-5p, hsa-let-7d-5p, and hsa-let-7e-5p are also implemented. As a result, 14, 9, and 9 out of the top 15 targets that interacted with these miRNAs were verified using the experimental literature or other databases. All these prediction results indicate that MIPDH is an effective method for predicting miRNA-target mRNA interactions.

4.
J Cell Mol Med ; 24(1): 79-87, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568653

RESUMO

LncRNA and miRNA are key molecules in mechanism of competing endogenous RNAs(ceRNA), and their interactions have been discovered with important roles in gene regulation. As supplementary to the identification of lncRNA-miRNA interactions from CLIP-seq experiments, in silico prediction can select the most potential candidates for experimental validation. Although developing computational tool for predicting lncRNA-miRNA interaction is of great importance for deciphering the ceRNA mechanism, little effort has been made towards this direction. In this paper, we propose an approach based on linear neighbour representation to predict lncRNA-miRNA interactions (LNRLMI). Specifically, we first constructed a bipartite network by combining the known interaction network and similarities based on expression profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour representation method was introduced to construct a prediction model. To evaluate the prediction performance of the proposed model, k-fold cross validations were implemented. As a result, LNRLMI yielded the average AUCs of 0.8475 ± 0.0032, 0.8960 ± 0.0015 and 0.9069 ± 0.0014 on 2-fold, 5-fold and 10-fold cross validation, respectively. A series of comparison experiments with other methods were also conducted, and the results showed that our method was feasible and effective to predict lncRNA-miRNA interactions via a combination of different types of useful side information. It is anticipated that LNRLMI could be a useful tool for predicting non-coding RNA regulation network that lncRNA and miRNA are involved in.


Assuntos
Algoritmos , Biologia Computacional/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Área Sob a Curva , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...