Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(22): 8941-8948, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36356229

RESUMO

We introduce a novel planar tunneling architecture for van der Waals heterostructures based on via contacts, namely, metallic contacts embedded into through-holes in hexagonal boron nitride (hBN). We use the via-based tunneling method to study the single-particle density of states of two different two-dimensional (2D) materials, NbSe2 and graphene. In NbSe2 devices, we characterize the barrier strength and interface disorder for barrier thicknesses of 0, 1, and 2 layers of hBN and study the dependence on the tunnel-contact area down to (44 ± 14)2 nm2. For 0-layer hBN devices, we demonstrate a crossover from diffusive to point contacts in the small-contact-area limit. In graphene, we show that reducing the tunnel barrier thickness and area can suppress effects due to phonon-assisted tunneling and defects in the hBN barrier. This via-based architecture overcomes limitations of other planar tunneling designs and produces high-quality, ultraclean tunneling structures from a variety of 2D materials.

2.
Sci Adv ; 8(3): eabj1742, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061537

RESUMO

Here, we report light emission from single atoms bridging a graphene nanogap that emit bright visible light based on fluorescence of ionized atoms. Oxygen atoms in the gap shows a peak emission wavelength of 569 nm with a full width at half maximum (FWHM) of 208 nm. The energy states produced by these ionized oxygen atoms bridging carbon atoms in the gap also produce a large negative differential resistance (NDR) in the transport across the gap with the highest peak-to-valley current ratio (PVR = 45) and highest peak current density (~90 kA/cm2) ever reported in a solid-state tunneling device. While tunneling transport has been previously observed in graphene nanogaps, the bridging of ionized oxygen observed here shows a low excess current, leading to the observed PVR. On the basis of the highly reproducible light emission and NDR from these structures, we demonstrate a 65,536-pixel light-emitting nanogap array.

3.
Nat Commun ; 12(1): 5298, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489428

RESUMO

Ferroelectricity, the electrostatic counterpart to ferromagnetism, has long been thought to be incompatible with metallicity due to screening of electric dipoles and external electric fields by itinerant charges. Recent measurements, however, demonstrated signatures of ferroelectric switching in the electrical conductance of bilayers and trilayers of WTe2, a semimetallic transition metal dichalcogenide with broken inversion symmetry. An especially promising aspect of this system is that the density of electrons and holes can be continuously tuned by an external gate voltage. This degree of freedom enables measurement of the spontaneous polarization as free carriers are added to the system. Here we employ capacitive sensing in dual-gated mesoscopic devices of bilayer WTe2 to directly measure the spontaneous polarization in the metallic state and quantify the effect of free carriers on the polarization in the conduction and valence bands, separately. We compare our results to a low-energy model for the electronic bands and identify the layer-polarized states that contribute to transport and polarization simultaneously. Bilayer WTe2 is thus shown to be a fully tunable ferroelectric metal and an ideal platform for exploring polar ordering, ferroelectric transitions, and applications in the presence of free carriers.

4.
Nano Lett ; 21(18): 7669-7675, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516139

RESUMO

Two-dimensional monolayer structures of transition metal dichalogenides (TMDs) have been shown to allow many higher-order excitonic bound states, including trions (charged excitons), biexcitons (excitonic molecules), and charged biexcitons. We report here experimental evidence and the theoretical basis for a new bound excitonic complex, consisting two free carriers bound to an exciton in a bilayer structure. Our experimental measurements on structures made using two different materials show a new spectral line at the predicted energy with two different TMD materials (MoSe2 and WSe2) with both n- and p-doping if and only if all the required theoretical conditions for this complex are fulfilled, in particular, only in the presence of a parallel metal layer that significantly screens the repulsive interaction between the like-charge carriers. Because these four-carrier bound states are charged bosons, they could eventually be the basis for a new path to superconductivity without Cooper pairing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...