Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 244: 120485, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611357

RESUMO

The musty odorant (2-methylisoborneol, MIB) is prevalent in source water reservoirs and has become one of the major challenges for drinking water quality. This study proposes an approach to control the growth of MIB-producing cyanobacteria in a small reservoir based on hydraulic regulation, according to the results of long-term field investigations, laboratory culture experiments, model construction, and field application. Field investigations found that longer hydraulic retention time (HRT) is a factor that triggers MIB episodes. The culture study revealed that the maximum cell density, growth rate of MIB-producing Planktothricoides raciborskii, and MIB concentration are determined by the HRT (R2= 0.94, p-value < 0.001) and can be minimized by decreasing the HRT to less than 10 d. On this basis, an HRT regulation model was constructed and validated by field investigation, and critical HRT values were evaluated for 14 cyanobacteria genera. By decreasing the HRT to 5.4 ± 0.8 d, which is lower than the critical value of 7.5 ∼ 15.0 d, an MIB episode was successfully terminated in ZXD Reservoir in 2021. The results suggest that the proposed principle can provide a scientific basis for HRT regulation, which has been proved to be effective and feasible. This approach avoids negative impacts on water quality, does not require extra investment in engineering infrastructure, and in some cases may be applied readily by changing existing operational procedures. Therefore, HRT-based regulation is a promising strategy targeting MIB control and possibly for other cyanobacterial-derived water quality problems in small reservoirs.


Assuntos
Água Potável , Odorantes/análise , Qualidade da Água
2.
Water Res ; 231: 119667, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724724

RESUMO

Cellular 2-methylisoborneol (MIB) yield of cyanobacteria varies under different conditions according to culture studies and field investigations, the causal mechanism remains unclear and results in ineffective MIB prediction. Through an intensive field survey during an MIB episode produced by Pseudanabaena cinerea in QCS reservoir, we demonstrated that MIB synthesis (mic) gene abundance (DNA) and expression (RNA) might be useful as parameters for early warning of MIB production. It was found that the abundance of mic DNA and RNA peaked ahead of MIB concentrations by 10 and 7 days, respectively. In addition, the RNA abundance (R2 = 0.45, p < 0.01) showed a slightly higher correlation with MIB compared to DNA abundance (R2 = 0.37, p < 0.01), suggesting that the conditions for the growth of Pseudanabaena cinerea might be slightly different from those for mic gene expression, which was verified by a culture experiment. The highest cell growth was obtained under 36 µmol photons m-2 s-1, while the highest cellular MIB yield and mic gene expression level were obtained under 85 µmol photons m-2 s-1. Our results clearly supported that light intensity was the virtual regulator governing the mic gene expression within the controlled culture experiment and the actual MIB episode in the reservoir. Besides these results, we developed an early warning model using mic gene abundance as an indicator of MIB episodes, which was verified in two other reservoirs. Our findings highlight the effect of light intensity on mic gene expression and MIB synthesis and provide an early warning tool targeting MIB episode prediction, which therefore should be of importance for source water authorities.


Assuntos
Cianobactérias , Água Potável , Água Potável/microbiologia , Canfanos , Cianobactérias/metabolismo , Abastecimento de Água , Odorantes/análise
3.
Water Res ; 220: 118670, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640507

RESUMO

In comparison with the middle- and high-latitude regions, the low-latitude regions are less associated with the occurrence of 2-methylisoborneol (MIB) episodes, since most of the previously identified MIB producers favor moderate/low light/temperature conditions. Here, we report a serious MIB outbreak over the period from Jul. 2018 to Jun. 2019 in a low-latitude reservoir with a mean annual water temperature of 25.6 °C. The MIB episode lasted for a long period, from Jul. 2018 to Jan. 2019, and Planktothricoides raciborskii was confirmed to be the main MIB producer. The growth characteristics of P. raciborskii were explored through both laboratory culturing and on-site verification experiments. The results indicated that this strain was not nutrient-sensitive at TN > 800 µg L-1 and TP > 10 µg L-1, but favored moderate light intensity (54 µmol photon m-2·s-1) and high temperature (30 °C). The two bloom-forming genera, Limnothrix and Aphanizomenon, favoring lower temperature and similar or relatively higher light intensity, showed much greater proliferation, about 13 folds (Limnothrix) and 58 folds (Aphanizomenon), from Dec. to Jun.; by contrast, the high water temperature (29.9 ± 2.8 °C) and light intensity (189.1 ± 87.6 µmol photon m-2·s-1) from Jul. to Nov. were not favorable to Limnothrix or Aphanizomenon, which might have created an opportunity for the growth of MIB-producing P. raciborskii. In addition, we also found that high temperature could promote the release of MIB from P. raciborskii cells, therefore exerting increased pressure on drinking water treatment processes.


Assuntos
Aphanizomenon , Cianobactérias , Luz , Odorantes , Temperatura
4.
Environ Res ; 204(Pt C): 112308, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34757030

RESUMO

Cyanobacteria release 2-methylisoborneol (MIB) as a secondary metabolite. Here, we propose a reverse transcription quantitative real-time PCR (RT-qPCR) based method to evaluate the MIB-producing potential in source water by detecting the MIB-synthesis gene (mic). A MIBQSF/R primer set was designed based on 35 mic gene sequences obtained from 12 pure-cultured MIB-producing strains and 23 sequences from the NCBI database. This primer set successfully identified all known 43 MIB-producing cyanobacterial strains (12 from this study and 31 from the NCBI database), belonging to different genera, showing a wider coverage than previous primer sets. The efficiency of the method was proved by the amplification efficiency (E = 91.23%), R2 of the standard curve (0.999), the limit of detection (LOD, 5.7 fg µL-1), and the limit of quantification (LOQ, 1.86 × 104 gene copies µL-1). Further, the method was verified by the correlation between the mic gene abundance and MIB concentration 50 field samples from different reservoirs (R2 = 0.614, p < 0.001) and one reservoir (R2 = 0.752, p < 0.001), suggesting its potential as an alternative warning tool to evaluate the risk of MIB problems in source water.


Assuntos
Cianobactérias , Água Potável , Canfanos/análise , Cianobactérias/genética , Cianobactérias/metabolismo , Água Potável/análise , Odorantes/análise , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA