Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 8(8): 2330-2334, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846438

RESUMO

Increasing the energy band gap under the premise to maintain a large nonlinear optical (NLO) response is a challenging issue for the exploration and molecular design of mid-infrared nonlinear optical crystals. Utilizing a charge-transfer engineering method, we designed and synthesized a rare earth chalcogenide, KYGeS4. With an NLO effect as large as that in AgGaS2, KYGeS4 breaks through the limitation of energy band gap, i.e., the "3.0 eV wall", in NLO rare earth chalcogenides, and thus exhibits an excellent comprehensive NLO performance. First-principles electronic structure analysis demonstrates that the large band gap in KYGeS4 is ascribed to the decreased covalency of Y-S bonds by transferring charge from [YS7] to [GeS4] polyhedra. The charge-transfer engineering strategy would have significant implications for the exploration of good-performance NLO crystals.

2.
Materials (Basel) ; 14(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494325

RESUMO

Nanoscale engineering of regular structured materials is immensely demanded in various scientific areas. In this work, vertically oriented TiO2 nanotube arrays were grown by self-organizing electrochemical anodization. The effects of different fluoride ion concentrations (0.2 and 0.5 wt% NH4F) and different anodization times (2, 5, 10 and 20 h) on the morphology of nanotubes were systematically studied in an organic electrolyte (glycol). The growth mechanisms of amorphous and anatase TiO2 nanotubes were also studied. Under optimized conditions, we obtained TiO2 nanotubes with tube diameters of 70-160 nm and tube lengths of 6.5-45 µm. Serving as free-standing and binder-free electrodes, the kinetic, capacity, and stability performances of TiO2 nanotubes were tested as lithium-ion battery anodes. This work provides a facile strategy for constructing self-organized materials with optimized functionalities for applications.

3.
Chem Commun (Camb) ; 55(96): 14510-14513, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31735948

RESUMO

A new germanium-based sulfide, Ba6Cu2FeGe4S16, achieves a band-gap broadening of more than 1 eV relative to CuFeS2. Remarkably, Ba6Cu2FeGe4S16 exhibits excellent comprehensive NLO performance (SHG, 1.5 × AgGaSe2; LDT, 2 × AgGaSe2), satisfying the essential requirements of mid-IR NLO candidates.

4.
Inorg Chem ; 58(22): 15029-15033, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31608626

RESUMO

In the military and civilian fields, with the development of new technologies, high-powered nonlinear optical (NLO) crystals demonstrate broad application prospects. In this work, for purposes of designing a better NLO material, a new chalcogenide Rb10Zn4Sn4S17 was successfully designed with a high temperature solid-state method on the basis of previously reported compound Sr3MnSn2S8. The experimental results indicate that Rb10Zn4Sn4S17 possesses a prominent band gap of 3.59 eV, compared with the laser damage threshold (LDT) of Sr3MnSn2S8 (3 times that of AgGaS2); Rb10Zn4Sn4S17 shows an outstanding LDT about 5 times that of AgGaS2. Meanwhile, it has an ideal second harmonic generation (SHG) response approximately 0.7 times that of AgGaS2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...