Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32444, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933986

RESUMO

Pogostemon cablin (PC) is a traditional Chinese medicine (TCM) and food as well as an important essential oil plant in China. PC essential oil exerts pharmacological effects such as anti-inflammatory, anti-oxidant, anti-platelet, anti-thrombotic, and anti-depressant. This study established a reliable and sensitive gas chromatography-mass spectrometry (GC-MS) method for the simultaneous determination of the pharmacokinetics of patchouli alcohol, ß-elemene, ß-caryophyllene, caryophyllene oxide, and farnesol in the plasma of rats after oral administration of PC essential oil extract. Using ethyl acetate to prepare the plasma samples, and p-menthone was used as the internal standard (IS). An HP5-MS column (0.25 µm × 0.25 mm × 30 m) was used for chromatographic separation, and detection was performed in selected ion monitoring (SIM) mode. The accuracies of intra-day and inter-day for all analytes displayed a range of -6.7 %-9.2 %, with precision below 12.5 %. Extraction recoveries for analytes ranged from 74.0 to 106.4 % and matrix effects ranged from 92.4 to 106.9 %. Stability results have demonstrated that the relative standard deviations (RSD) of analytes were below 12.1 %. Therefore, the developed GC-MS method successfully evaluated the pharmacokinetics of five volatile components in PC essential oil extract administered orally to rats.

2.
Front Pharmacol ; 15: 1293464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841366

RESUMO

Introduction: Pogostemon cablin (PC) is used in traditional Chinese medicine and food, as it exerts pharmacological effects, such as immune-modulatory, antibacterial, antioxidant, antitumor, and antiviral. Currently, the pharmacokinetics (PK) studies of PC mainly focus on individual components. However, research on these individual components cannot reflect the actual PK characteristics of PC after administration. Therefore, the simultaneous determination of multiple components in rat plasma using UPLC-MS/MS was used for the pharmacokinetic study after oral administration of PC extract in this study, providing reference value for the clinical application of PC. Methods: In the present study, a reliable and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of 15 prototype components (vanillic acid, vitexin, verbascoside, isoacteoside, hyperoside, cosmosiin, apigenin, ß-rhamnocitrin, acacetin, ombuin, pogostone, pachypodol, vicenin-2, retusin, and diosmetin-7-O-ß-D-glucopyranoside) in rat plasma after oral administration of the PC extract. Plasma samples were prepared via protein precipitation using acetonitrile, and icariin was used as the internal standard (IS). Results: The intra-day and inter-day accuracies ranged from -12.0 to 14.3%, and the precision of the analytes was less than 11.3%. The extraction recovery rate of the analytes ranged from 70.6-104.5%, and the matrix effects ranged from 67.4-104.8%. Stability studies proved that the analytes were stable under the tested conditions, with a relative standard deviation lower than 14.1%. Conclusion: The developed method can be applied to evaluate the PK of 15 prototype components in PC extracts of rats after oral administration using UPLC-MS/MS, providing valuable information for the development and clinical safe, effective, and rational use of PC.

3.
J Ethnopharmacol ; 313: 116589, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142149

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Perilla Folium (PF), is a traditional medicinal material with the homology of medicine and food in China and has been widely used due to its rich nutritional content and medicinal value. The hepatoprotective effects of PF extract include their protection against acute hepatic injury, tert-butylhydroperoxide (t-BHP) induced oxidative damage, and Lipopolysaccharide (LPS) and D-galactosamine (D-GalN) induced hepatic injury have been well studied. However, there are few reports on the pharmacokinetics studies of PF extract in acute hepatic injury model rats, and the anti-hepatic injury activity of PF is still unclear. AIM OF THE STUDY: The differences in the plasma pharmacokinetic of 21 active compounds between the normal and model groups were compared, and established pharmacokinetics/pharmacodynamics (PK/PD) modeling was to analyze the hepatoprotective effects of PF. MATERIALS AND METHODS: The acute hepatic injury model was induced with an intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-GalN), and the plasma pharmacokinetics of 21 active compounds of PF were analyzed in the normal and model groups using ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). The correlation between plasma components and hepatoprotective effects indicators (the alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactic dehydrogenase (LDH)) in the model group was also investigated and established a Pharmacokinetic/pharmacodynamic (PK/PD) correlation analysis of the hepatoprotective effects of PF. RESULTS: The results revealed that organic acid compounds possessed the characteristics of faster absorption, shorter peak time and slower metabolism, while the flavonoid compounds had slower absorption and longer peak time, and the pharmacokinetics of various components were significantly affected after modeling. The results of PK/PD modeling analysis demonstrated that the plasma drug concentration of each component existed a good correlation with the three AST, ALT, and LDH, and the lag time of the efficacy of each component is relatively long. CONCLUSIONS: The plasma drug concentration of each component existed a good correlation with the three AST, ALT, and LDH, and the lag time of the efficacy of each component is relatively long in vivo.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Lipopolissacarídeos , Ratos , Animais , Lipopolissacarídeos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fígado , Galactosamina/toxicidade , Galactosamina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Aspartato Aminotransferases , Alanina Transaminase
4.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364050

RESUMO

Geo-authentic herbs refer to medicinal materials produced in a specific region with superior quality. Stephania tetrandra S. Moore (S. tetrandra) is cultivated in many provinces of China, including Anhui, Zhejiang, Fujian, Jiangxi, Hunan, Guangxi, Guangdong, Hainan, and Taiwan, among which Jiangxi is the geo-authentic origin. To explore habitat-related chemical markers of herbal medicine, an integrated chromatographic technique including gas chromatography-mass spectrometry (GC-MS), ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) combined with chemometric analysis was established. The established methods manifested that they were clearly divided into two groups according to non-authentic origins and geo-authentic origins, suggesting that the metabolites were closely related to their producing areas. A total of 70 volatile compounds and 50 non-volatile compounds were identified in S. tetrandra. Meanwhile, tetrandrine, fangchinoline, isocorydine, magnocurarine, magnoflorine, boldine, and higenamine as chemical markers were accurately quantified and suggested importance in grouping non-authentic origins and geo-authentic origins samples. The discriminatory analysis also indicated well prediction performance with an accuracy of 80%. The results showed that the multiple chromatographic and chemometric analysis technique could be used as an effective approach for discovering the chemical markers of herbal medicine to fulfill the evaluation of overall chemical consistency among samples from different producing areas.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Stephania tetrandra , Stephania tetrandra/química , Espectrometria de Massas em Tandem/métodos , Quimiometria , China , Cromatografia Líquida de Alta Pressão/métodos , Plantas Medicinais/química , Medicamentos de Ervas Chinesas/química , Ecossistema
5.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234881

RESUMO

Mume Fructus is a well-known herbal medicine and food with a long history of processing and application. Different processing methods impact the intrinsic quality of Mume Fructus. Thus, it is of great significance to investigate the changes in chemical components during processing (i.e., raw compared to the pulp and charcoal forms). In this study, plant metabolomics methods based on mass spectrometry detection were established to analyze the chemical ingredients of Mume Fructus comprehensively. Chemometric strategies were combined to analyze the profile differences of Mume Fructus after different processing methods. The established strategy identified 98 volatile and 89 non-volatile compounds of Mume Fructus by gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS), respectively. Moreover, the orthogonal partial least squares discriminant analysis (OPLS-DA) indicated that raw Mume Fructus and the Mume Fructus pulp and charcoal were distributed in three regions. Subsequently, 19 volatile and 16 non-volatile components were selected as potential chemical component markers with variable importance in the projection using (VIP) >1 as the criterion, and the accuracy was verified by a Back Propagation Neural Network (BP-NN). To further understand the difference in the content of Mume Fructus before and after processing, 16 non-volatile chemical component markers were quantitatively determined by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS). The results revealed that, compared with raw Mume Fructus, the total content of 16 components in the pulp of Mume Fructus increased while it decreased in the charcoal. Therefore, this study used GC-MS, UHPLC-Q-TOF-MS/MS and UHPLC-MS/MS modern technology to analyze the differences in chemical components before and after the processing of Mume Fructus and provided a material basis for further research on the quality evaluation and efficacy of Mume Fructus.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Carvão Vegetal , Quimiometria , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos
6.
Front Pharmacol ; 13: 954692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210842

RESUMO

Prunus mume fructus (MF) is used in traditional Chinese medicine and food, as it exerts pharmacological effects, such as antibacterial, antioxidant, antitumour, thirst-relieving, and antidiarrheal effects. In the present study, a reliable and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of 16 prototype components (L-(-)-malic acid, 3,4-dihydroxybenzaldehyde, protocatechuic acid, vanillic acid, caffeic acid, D-(-)-quinic acid, citric acid, ferulic acid, syringic acid, cryptochlorogenic acid, neochlorogenic acid, chlorogenic acid, amygdalin, maslinic acid, corosolic acid, and rutin) in rat plasma after oral administration of the MF extract. Plasma samples were prepared via protein precipitation using acetonitrile. The 16 components were separated on an ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with a gradient mobile phase system of methanol and 0.1% (v/v) formic acid aqueous solution at a flow rate of 0.3 ml/min. All components were quantitated using Agilent Jet Stream electrospray ionisation in negative ion mode. The intra-day and inter-day accuracies ranged from-9.4 to 9.4%, and the precision of the analytes was less than 14.8%. The extraction recovery rate of the analytes ranged from 63.59 to 109.44% and the matrix effects ranged from 49.25 to 109.28%. Stability studies proved that the analytes were stable under the tested conditions, with a relative standard deviation lower than 13.7%. Hence, the developed method was successfully applied to evaluate the pharmacokinetics of 16 components in the MF extract after oral administration in rats using UPLC-MS/MS.

7.
J Agric Food Chem ; 70(28): 8838-8853, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35801594

RESUMO

Perilla frutescens (L.) Britt. is a plant that has been classified as one of the "One Root of Medicine and Food", and it can be used both as medicine and as food. To explore the influence of different varieties and harvest periods on the quality of different medicinal parts of P. frutescens, a comprehensive study on the chemical constituents of P. frutescens based on plant metabolomics was conducted. A total of 57 nonvolatile chemical components and 105 volatile chemical components of P. frutescens were characterized by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and gas chromatography-mass spectrometry (GC-MS). Furthermore, 35, 27, and 2 nonvolatile constituents as well as 16, 16, and 18 volatile constituents were identified as potential markers for discriminating P. frutescens between different medicinal parts, different varieties, and different harvest periods, respectively. Besides, 22 bioactive compounds of P. frutescens were quantitatively determined by a new sensitive UPLC-MS/MS method. This study comprehensively compares the differences and similarities of P. frutescens among the different medicinal parts, different varieties, and different harvest periods, and the results of this study may provide a theoretical basis and guidance for studying the quality evaluation and the optimization of the harvest period of this plant.


Assuntos
Perilla frutescens , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Perilla frutescens/química , Espectrometria de Massas em Tandem
8.
Front Nutr ; 9: 841541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571961

RESUMO

The root of Panax notoginseng, a highly valued medicine and functional food, is the main part used for medicinal purposes. However, the stems and leaves are also used in practice. To provide a chemical basis for various uses, a quantitative comparison of 18 saponins using a non-targeted metabolomics approach was established, so as to investigate the chemical profiles of the different parts of P. notoginseng. The established strategy revealed that roots and stems, with their similar chemical characteristics, consisted mainly of protopanaxatriol-type saponins, whereas protopanaxadiol-type saponins were principally present in the leaves. Multivariate analysis further suggested that the quality of the stems and leaves of P. notoginseng was significantly affected by its geographical origin. Furthermore, 52 constituents (26 non-volatile and 26 volatile) were identified as potential markers for discriminating between different parts of the plant. Taken together, the study provides comprehensive chemical evidence for the rational application and exploitation of different parts of P. notoginseng.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA