Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(2): 375-385.e7, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38103556

RESUMO

Cyclic-oligonucleotide-based anti-phage signaling system (CBASS) is a common immune system that uses cyclic oligonucleotide signals to limit phage replication. In turn, phages encode anti-CBASS (Acb) proteins such as Acb2, which can sequester some cyclic dinucleotides (CDNs) and limit downstream effector activation. Here, we identified that Acb2 sequesters many CDNs produced by CBASS systems and inhibits stimulator of interferon genes (STING) activity in human cells. Surprisingly, the Acb2 hexamer also binds with high affinity to CBASS cyclic trinucleotides (CTNs) 3'3'3'-cyclic AMP-AMP-AMP and 3'3'3'-cAAG at a distinct site from CDNs. One Acb2 hexamer can simultaneously bind two CTNs and three CDNs. Phage-encoded Acb2 provides protection from type III-C CBASS that uses cA3 signaling molecules. Moreover, phylogenetic analysis of >2,000 Acb2 homologs encoded by diverse phages and prophages revealed that most are expected to bind both CTNs and CDNs. Altogether, Acb2 sequesters nearly all known CBASS signaling molecules through two distinct binding pockets and therefore serves as a broad-spectrum inhibitor of cGAS-based immunity.


Assuntos
Bacteriófagos , Nucleotídeos Cíclicos , Humanos , Nucleotídeos Cíclicos/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Filogenia , AMP Cíclico , Oligonucleotídeos
2.
Child Neurol Open ; 10: 2329048X231184184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560515

RESUMO

Recently, the loss-of-function, heterozygous, and de novo mutations of the CTNNB1 gene have been proven to be partially responsible for intellectual disability in some patients. Herein, we report two unrelated children with neurodevelopmental disorder, abnormal facial features, speech impairments, microcephaly, and dystonia. Based on whole exome sequencing (WES), two new heterozygous and pathogenic mutations in exon 10 (c.1586dupA:p.Q530Afs*42) and exon 4 (c.257dup:p.Y86*) were identified in the CTNNB1 gene for the first time. These findings not only enrich the genetic spectrum of the CTNNB1 gene but also provide evidence for its role in neuronal development.

3.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398474

RESUMO

CBASS is a common anti-phage immune system that uses cyclic oligonucleotide signals to activate effectors and limit phage replication. In turn, phages encode anti-CBASS (Acb) proteins. We recently uncovered a widespread phage anti-CBASS protein Acb2 that acts as a "sponge" by forming a hexamer complex with three cGAMP molecules. Here, we identified that Acb2 binds and sequesters many CBASS and cGAS-produced cyclic dinucleotides in vitro and inhibits cGAMP-mediated STING activity in human cells. Surprisingly, Acb2 also binds CBASS cyclic trinucleotides 3'3'3'-cyclic AMP-AMP-AMP (cA3) and 3'3'3'-cAAG with high affinity. Structural characterization identified a distinct binding pocket within the Acb2 hexamer that binds two cyclic trinucleotide molecules and another binding pocket that binds to cyclic dinucleotides. Binding in one pocket does not allosterically alter the other, such that one Acb2 hexamer can simultaneously bind two cyclic trinucleotides and three cyclic dinucleotides. Phage-encoded Acb2 provides protection from Type III-C CBASS that uses cA3 signaling molecules in vivo and blocks cA3-mediated activation of the endonuclease effector in vitro. Altogether, Acb2 sequesters nearly all known CBASS signaling molecules through two distinct binding pockets and therefore serves as a broad-spectrum inhibitor of cGAS-based immunity.

4.
Chembiochem ; 24(18): e202300266, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37195016

RESUMO

Escherichia coli and other Enterobacteriaceae thrive in robust biofilm communities through the coproduction of curli amyloid fibers and phosphoethanolamine cellulose. Curli promote adhesion to abiotic surfaces and plant and human host tissues and are associated with pathogenesis in urinary tract infection and food-borne illness. The production of curli in the host has also been implicated in the pathogenesis of neurodegenerative diseases. We report that the natural product nordihydroguaiaretic acid (NDGA) is effective as a curlicide in E. coli. NDGA prevents CsgA polymerization in vitro in a dose-dependent manner. NDGA selectively inhibits cell-associated curli assembly and inhibits uropathogenic E. coli biofilm formation. More broadly, this work emphasizes the ability to evaluate and identify bioactive amyloid assembly inhibitors by using the powerful gene-directed amyloid biogenesis machinery in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Masoprocol/farmacologia , Polimerização , Amiloide/farmacologia , Proteínas Amiloidogênicas , Biofilmes , Proteínas de Bactérias/farmacologia
5.
Proc Natl Acad Sci U S A ; 119(21): e2119189119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588451

RESUMO

The metazoan innate immune second messenger 2'3'-cGAMP is present both inside and outside cells. However, only extracellular cGAMP can be negatively regulated by the extracellular hydrolase ENPP1. Here, we determine whether ENPP1's regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating stimulator of interferon genes (STING) signaling. We identified ENPP1H362A, a point mutation that cannot degrade the 2'-5' linkage in cGAMP while maintaining otherwise normal function. The selectivity of this histidine is conserved down to bacterial nucleotide pyrophosphatase/phosphodiesterase (NPP), allowing structural analysis and suggesting an unexplored ancient history of 2'-5' cyclic dinucleotides. Enpp1H362A mice demonstrated that extracellular cGAMP is not responsible for the devastating phenotype in ENPP1-null humans and mice but is responsible for antiviral immunity and systemic inflammation. Our data define extracellular cGAMP as a pivotal STING activator, identify an evolutionarily critical role for ENPP1 in regulating inflammation, and suggest a therapeutic strategy for viral and inflammatory conditions by manipulating ENPP1 activity.


Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , Diester Fosfórico Hidrolases , Pirofosfatases , Animais , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotídeos Cíclicos/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Transdução de Sinais
6.
Chem Rev ; 122(3): 3414-3458, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34870969

RESUMO

The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.


Assuntos
Imunidade Inata , Humanos
7.
Chem Asian J ; 16(3): 237-246, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146945

RESUMO

Silver nanoparticles (AgNPs) are widely sought after for a variety of biomedical and environmental applications due to their antimicrobial and catalytic properties. We present here a green and simple synthesis of AgNPs utilizing traditional Chinese medicinal herbs. The screening of 20 aqueous herb extracts shows that Sheng Di Huang (Rehmannia glutinosa) had the most promising potential in producing AgNPs of 30±6 nm, with narrow size distribution and high crystallinity. The antimicrobial activities of these AgNPs conducted on E. coli cells were found to be superior in comparison to poly(vinylpyrrolidone)-capped AgNPs synthesized using common chemical method. Additionally, the AgNPs obtained possess excellent catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol. We compared the phytochemical and FTIR spectral analyses of the herb extract before and after synthesis, in order to elucidate the phytochemicals responsible for the reduction of Ag+ ions and the capping of the AgNPs produced.


Assuntos
Anti-Infecciosos/síntese química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Rehmannia/química , Prata/química , Aminofenóis/química , Anti-Infecciosos/química , Catálise , Química Verde , Nitrofenóis/química , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Rehmannia/metabolismo
8.
Neurosci Lett ; 614: 60-4, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26762786

RESUMO

Extensive studies focus on the cognitive and motor impairments after perinatal hypoxic-ischemia (HI). Sleep problems, although reported to be associated with cerebral palsy (CP), are often overlooked in non-severe HI patients. Here, by investigating the sleep qualities of children with different degrees of HI, we discovered that sleep initiation and maintenance, sleep-related breathing problems, or circadian rhythmic issues were highly associated with children of moderate or mild HI, respectively. Follow-up MRI studies in 2-year old patients showed that periventricular white matter lesions including periventricular leukomalacia (PVL) were prevalent in moderate, but not mild, HI children. In contrast, the occurrence of pineal cysts had a high risk in children with mild HI. Our study provides novel insights into the mechanisms of distinctive sleep problems associated with children of different degrees of HI, and therefore sheds light on the studies of targeted therapeutic treatments for sleep disorders in children who suffer from HI.


Assuntos
Hipóxia-Isquemia Encefálica/fisiopatologia , Transtornos do Sono-Vigília/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Pré-Escolar , Ritmo Circadiano , Feminino , Humanos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/patologia , Leucomalácia Periventricular/etiologia , Leucomalácia Periventricular/patologia , Leucomalácia Periventricular/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Transtornos do Sono-Vigília/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...