Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172887, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38692317

RESUMO

Solar interface evaporation is an effective method for the treatment of water that has low energy consumption. Adsorption is recognized to be one of the most stable wastewater treatment methods and is widely used. Combining solar interface evaporation with adsorption provides a novel and low-cost approach for the efficient removal of heavy metals and organic pollutants from industrial wastewater. This paper reviews the characteristics and application of some common wastewater treatment methods. The photothermal conversion and the conceptual design of interface evaporation combined with adsorption are introduced and the photo-thermal conversion and adsorption methods are discussed. The study provides a summary of recent studies and advancements in interfacial evaporation-coupled adsorption materials, which include hydrogels, aerogels, and biomass materials for adsorption, and carbon materials for photothermal conversion. Finally, the current challenges encountered in industrial wastewater treatment are outlined and its prospects are discussed. The aim of this review is to explore a wide range of possibilities with the interfacial evaporation-coupled adsorption method and propose a new low-cost and high-efficiency method for industrial wastewater treatment.

2.
Small ; 19(21): e2300066, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823284

RESUMO

Hybrid solid-state electrolytes (HSSEs) provide new opportunities and inspiration for the realization of safer, higher energy-density metal batteries. The innovative application of 3-dimensional printing in the electrochemical field, especially in solid-state electrolytes, endows energy storage devices with fascinating characteristics. In this paper, effective dendrite-inhibited PEO/MOFs HSSEs is innovatively developed through universal room-temperature 3-dimensional printing (RT-3DP) strategy. The prepared HSSEs display enhanced dendrite inhibition due to the porous MOF filler promoting homogeneity of lithium deposition and the formation of C-OCO3 Li, ROLi, LiF mesophases, which further improve the migration of Li+ in PEO chain and comprehensive performances. This universal strategy realizes the fabrication of different slurry components (PEO with ZIF-67, MOF-74, UIO-66, ZIF-8 fillers) HSSEs at RT environment, providing new inspirations for the exploration of next-generation advanced solid-state batteries.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34947651

RESUMO

In order to meet the growing demand for the electronics market, many new materials have been studied to replace traditional electrode materials for energy storage systems. Molybdenum oxide materials are electrode materials with higher theoretical capacity than graphene, which was originally used as anode electrodes for lithium-ion batteries. In subsequent studies, they have a wider application in the field of energy storage, such as being used as cathodes or anodes for other ion batteries (sodium-ion batteries, potassium-ion batteries, etc.), and electrode materials for supercapacitors. However, molybdenum oxide materials have serious volume expansion concerns and irreversible capacity dropping during the cycles. To solve these problems, doping with different elements has become a suitable option, being an effective method that can change the crystal structure of the materials and improve the performances. Therefore, there are many research studies on metal element doping or non-metal doping molybdenum oxides. This paper summarizes the recent research on the application of hetero-element-doped molybdenum oxides in the field of energy storage, and it also provides some brief analysis and insights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...