Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.449
Filtrar
1.
Skin Res Technol ; 30(5): e13749, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776128

RESUMO

BACKGROUND: Omalizumab is the only licensed drug that serves as a third-line treatment for chronic idiopathic urticaria (CIU). The optimum doses of omalizumab remain controversial. Therefore, this study aims to estimate the efficacy and safety of different doses of omalizumab in the treatment of CIU patients. MATERIALS AND METHODS: Four databases were searched from the database's creation to April 8, 2023. Several keywords such as omalizumab and urticarias were used to retrieve related studies. The meta-analytical outcomes were analyzed in R 4.2.1 software and Stata 15.1 software. Cochrane risk-of-bias tool Ver. 2 was used to evaluate the risk of bias in randomized controlled trials (RCTs). RESULTS: In total, 2331 patients were included. Five indexes were employed to assess, including weekly Itch Severity Score (ISS7), weekly Hive Severity Score (HSS7), weekly Urticaria Activity Score (UAS7), Dermatology Life Quality Index (DLQI), and adverse events (AE). A 300 mg dose of omalizumab was the optimum dose to treat CIU, followed by the 150 mg dose. Furthermore, 600 mg of omalizumab only showed a significant difference from the placebo in HSS7. No significant statistical difference was observed in AE. Meta-regression analysis revealed that time, as a covariate, was statistically significant in the comparison of omalizumab 150 mg with placebo. CONCLUSION: 300 mg of omalizumab was the optimum dosage to treat CIU patients, with a 150 mg dose also exhibiting good efficacy. Further studies are required to explore the efficacy and safety of different doses of omalizumab in the treatment of CIU patients.


Assuntos
Antialérgicos , Urticária Crônica , Omalizumab , Omalizumab/efeitos adversos , Omalizumab/administração & dosagem , Omalizumab/uso terapêutico , Humanos , Urticária Crônica/tratamento farmacológico , Antialérgicos/administração & dosagem , Antialérgicos/efeitos adversos , Antialérgicos/uso terapêutico , Resultado do Tratamento , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Qualidade de Vida , Relação Dose-Resposta a Droga
2.
Mar Pollut Bull ; 203: 116432, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38728954

RESUMO

Salinity fluctuations significantly impact the reproduction, growth, development, as well as physiological and metabolic activities of fish. To explore the osmoregulation mechanism of aquatic organisms acclimating to salinity stress, the physiological and transcriptomic characteristics of spotted seabass (Lateolabrax maculatus) in response to varying salinity gradients were investigated. In this study, different salinity stress exerted inhibitory effects on lipase activity, while the impact on amylase activity was not statistically significant. Notably, a moderate increase in salinity (24 psu) demonstrated the potential to enhance the efficient utilization of proteins by spotted seabass. Both Na+/K+-ATPase and malondialdehyde showed a fluctuating trend of increasing and then decreasing, peaking at 72 h. Transcriptomic analysis revealed that most differentially expressed genes were involved in energy metabolism, signal transduction, the immune response, and osmoregulation. These results will provide insights into the molecular mechanisms of salinity adaptation and contribute to sustainable development of the global aquaculture industry.

3.
J Cosmet Dermatol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733085

RESUMO

BACKGROUND: To date, a consensus on the relative efficacy and safety of CO2 fractional laser versus erbium-doped yttrium aluminum garnet (Er:YAG) fractional laser treatments for atrophic acne scars has not been reached. This meta-analysis aims to systematically assess and compare their effectiveness and safety in clinical practice. METHODS: For this meta-analysis, we conducted comprehensive searches in Pubmed, Embase, and Cochrane databases, covering publications from their inception up to August 2023. Our focus was on studies comparing fractional CO2 laser with Er:YAG fractional laser treatments for atrophic acne scars. We excluded duplicate publications, research lacking full-text access, incomplete data, or cases where data extraction was not feasible. Additionally, animal experiments, reviews, and systematic reviews were not considered. Data analysis was performed using STATA 15.1. RESULTS: Eight studies (seven randomized controlled trials (RCTs) and a retrospective study) were included in this meta-analysis. The sample size ranged from 28 to 106 with a total of 418 patients, including 210 in the CO2 fractional group and 208 in Er:YAG fractional group. The pooled results showed that the effective rate of CO2 fractional laser in treating atrophic acne scar was significantly higher than that of Er:YAG fractional laser (OR = 1.81, 95% CI: 1.08-3.01) and the downtime of CO2 fractional laser in treating atrophic acne scar was significantly shorter than that of Er:YAG fractional laser (Weighted Mean Difference (WMD) = -2.11, 95% CI: -3.11 to -1.10). In addition, VAS of CO2 fractional laser in treating atrophic acne scar was significantly higher than that of Er:YAG fractional laser (WMD = 1.77, 95% CI: 1.32-2.21) and the duration of erythema of CO2 fractional laser in treating atrophic acne scar was significantly longer than that of Er:YAG fractional laser (WMD = 1.85, 95% CI: 1.63-2.07). However, there was no significant difference in the duration of pain and incidence of PIHbetween CO2 fractional laser and of Er:YAG fractional laser. CONCLUSION: When it comes to treating atrophic acne scars, CO2 fractional laser demonstrates superior efficacy and leads to shorter downtime. However, it is important to note that CO2 fractional laser treatments tend to result in higher pain intensity and may carry a higher risk of post-treatment pigmentation compared to Er:YAG fractional laser procedures.

4.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732531

RESUMO

Few studies have examined dietary protein intake and sources, in combination with longitudinal changes in brain structure markers. Our study aimed to examine the association between dietary protein intake and different sources of dietary protein, with the longitudinal rate of change in brain structural markers. A total of 2723 and 2679 participants from the UK Biobank were separately included in the analysis. The relative and absolute amounts of dietary protein intake were calculated using a 24 h dietary recall questionnaire. The longitudinal change rates of brain structural biomarkers were computed using two waves of brain imaging data. The average interval between the assessments was three years. We utilized multiple linear regression to examine the association between dietary protein and different sources and the longitudinal changes in brain structural biomarkers. Restrictive cubic splines were used to explore nonlinear relationships, and stratified and sensitivity analyses were conducted. Increasing the proportion of animal protein in dietary protein intake was associated with a slower reduction in the total hippocampus volume (THV, ß: 0.02524, p < 0.05), left hippocampus volume (LHV, ß: 0.02435, p < 0.01) and right hippocampus volume (RHV, ß: 0.02544, p < 0.05). A higher intake of animal protein relative to plant protein was linked to a lower atrophy rate in the THV (ß: 0.01249, p < 0.05) and LHV (ß: 0.01173, p < 0.05) and RHV (ß: 0.01193, p < 0.05). Individuals with a higher intake of seafood exhibited a higher longitudinal rate of change in the HV compared to those that did not consume seafood (THV, ß: 0.004514; p < 0.05; RHV, ß: 0.005527, p < 0.05). In the subgroup and sensitivity analyses, there were no significant alterations. A moderate increase in an individual's intake and the proportion of animal protein in their diet, especially from seafood, is associated with a lower atrophy rate in the hippocampus volume.


Assuntos
Encéfalo , Proteínas Alimentares , Hipocampo , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Longitudinais , Proteínas Alimentares/administração & dosagem , Idoso , Imageamento por Ressonância Magnética , Atrofia , Proteínas Animais da Dieta/administração & dosagem , Dieta , Adulto , Reino Unido , Proteínas de Vegetais Comestíveis/administração & dosagem
5.
Nat Commun ; 15(1): 3949, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729934

RESUMO

Topological domain structures have drawn great attention as they have potential applications in future electronic devices. As an important concept linking the quantum and classical magnetism, a magnetic Bloch point, predicted in 1960s but not observed directly so far, is a singular point around which magnetization vectors orient to nearly all directions. Here we show polar Bloch points in tensile-strained ultrathin ferroelectric PbTiO3 films, which are alternatively visualized by phase-field simulations and aberration-corrected scanning transmission electron microscopic imaging. The phase-field simulations indicate local steady-state negative capacitance around the Bloch points. The observation of polar Bloch points and their emergent properties consequently implies novel applications in future integrated circuits and low power electronic devices.

6.
Adv Mater ; : e2314197, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713519

RESUMO

Combining radiotherapy with immune checkpoint blockade therapy offers a promising approach to treat glioblastoma multiforme (GBM), yet challenges such as limited effectiveness and immune-related adverse events (irAEs) persist. These issues are largely due to the failure in targeting immunomodulators directly to the tumor microenvironment. To address this, we developed a biomimetic nanoplatform that combines a genetically modified mesenchymal stem cell (MSC) membrane with a bioactive nanoparticle core for chemokine-directed radioimmunotherapy of GBM. The CCR2-overexpressing MSC membrane acts as a tactical tentacle to achieve radiation-induced tropism toward the abundant chemokine ligand CCL2 in irradiated gliomas. The nanoparticle core, comprising diselenide-bridged mesoporous silica nanoparticles (MSNs) and PD-L1 antibodies (αPD-L1), enables X-ray-responsive drug release and radiosensitization. In two murine models with orthotopic GBM tumors, this nanoplatform reinvigorated immunogenic cell death, and augmented the efficacy and specificity of GBM radioimmunotherapy, with reduced occurrence of irAEs. This study suggests a promising radiation-induced tropism strategy for targeted drug delivery, and presents a potent nanoplatform that enhances the efficacy and safety of radio-immunotherapy. This article is protected by copyright. All rights reserved.

8.
Oncogene ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698265

RESUMO

Regulatory T cells (Tregs) prevent autoimmunity and contribute to cancer progression. They exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-ß1 (TGF-ß1). However, the absence of a specific surface marker makes inhibiting the production of active TGF-ß1 to specifically deplete human Tregs but not other cell types a challenge. TGF-ß1 in an inactive form binds to Tregs membrane protein Glycoprotein A Repetitions Predominant (GARP) and then activates it via an unknown mechanism. Here, we demonstrated that tumour necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) in the Treg lysosome is involved in this activation mechanism. Using a novel naphthalenelactam-platinum-based anticancer drug (NPt), we developed a new synergistic effect by suppressing ATP-binding cassette subfamily B member 9 (ABCB9) and TRAF3IP3-mediated divergent lysosomal metabolic programs in tumors and human Tregs to block the production of active GARP/TGF-ß1 for remodeling the tumor microenvironment. Mechanistically, NPt is stored in Treg lysosome to inhibit TRAF3IP3-meditated GARP/TGF-ß1 complex activation to specifically deplete Tregs. In addition, by promoting the expression of ABCB9 in lysosome membrane, NPt inhibits SARA/p-SMAD2/3 through CHRD-induced TGF-ß1 signaling pathway. In addition to expose a previously undefined divergent lysosomal metabolic program-meditated GARP/TGF-ß1 complex blockade by exploring the inherent metabolic plasticity, NPt may serve as a therapeutic tool to boost unrecognized Treg-based immune responses to infection or cancer via a mechanism distinct from traditional platinum drugs and currently available immune-modulatory antibodies.

9.
J Immunol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700398

RESUMO

Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-ß1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.

10.
Biomed Mater ; 19(4)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38729172

RESUMO

The sensitivity and diagnostic accuracy of magnetic resonance imaging mainly depend on the relaxation capacity of contrast agents (CAs) and their accumulated amount at the pathological region. Due to the better biocompatibility and high-spin capacity, Fe-complexes have been studied widely as an alternative to replace popular Gd-based CAs associated with potential biotoxicity. Compared with a variety of Fe complex-based CAs, such as small molecular, macrocyclic, multinuclear complexes, the form of nanoparticle exhibits outstanding longitudinal relaxation, but the clinical transformation was still limited by the inconspicuous difference of contrast between tumor and normal tissue. The enhanced effect of contrast is a positive relation as relaxation of CAs and their concentration in desired region. To specifically improve the amount of CAs accumulated in the tumor, pH-responsive polymer poly(2-ethyl-2-oxazoline) (PEOz) was modified on melanin, a ubiquitous natural pigment providing much active sites for chelating with Fe(III). The Fe(III)-Mel-PEOz we prepared could raise the tumor cell endocytosis efficiency via switching surface charge from anion to cation with the stimuli of the decreasing pH of tumor microenvironment. The change of pH has negligible effect on ther1of Fe(III)-Mel-PEOz, which is always maintained at around 1.0 mM-1s-1at 0.5 T. Moreover, Fe(III)-Mel-PEOz exhibited low cytotoxicity, and satisfactory enhancement of positive contrast effectin vivo. The excellent biocompatibility and stable relaxation demonstrate the high potential of Fe(III)-Mel-PEOz in the diagnosis of tumor.


Assuntos
Materiais Biocompatíveis , Meios de Contraste , Ferro , Imageamento por Ressonância Magnética , Melaninas , Melaninas/química , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Animais , Materiais Biocompatíveis/química , Humanos , Ferro/química , Camundongos , Linhagem Celular Tumoral , Poliaminas/química , Nanopartículas/química , Microambiente Tumoral
11.
Int J Ophthalmol ; 17(5): 924-931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766340

RESUMO

AIM: To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children. METHODS: This is a prospective, randomized control, intervention study. A total of 1840 students from 39 classes in 4 primary schools in Foshan participated in this study. The whole randomization method was adopted to include classes as a group according to 1:1 randomized control. Classrooms in the control group were illuminated by usual light, and classrooms in the intervention group were illuminated by artificial natural light. All students received uncorrected visual acuity and best-corrected visual acuity measurement, non-cycloplegic autorefraction, ocular biometric examination, slit lamp and strabismus examination. Three-year follow-up, the students underwent same procedures. Myopia was defined as spherical equivalent refraction ≤ -0.50 D and uncorrected visual acuity <20/20. RESULTS: There were 894 students in the control group and 946 students in the intervention group with a mean±SD age of 7.50±0.53y. The three-year cumulative incidence rate of myopia was 26.4% (207 incident cases among 784 eligible participants at baseline) in the control group and 21.2% (164 incident cases among 774 eligible participants at baseline) in the intervention group [difference of 5.2% (95%CI, 3.7% to 10.1%); P=0.035]. There was also a significant difference in the three-year change in spherical equivalent refraction for the control group (-0.81 D) compared with the intervention group [-0.63 D; difference of 0.18 D (95%CI, 0.08 to 0.28 D); P<0.001]. Elongation of axial length was significantly different between in the control group (0.77 mm) and the intervention group [0.72 mm; difference of 0.05 mm (95%CI, 0.01 to 0.09 mm); P=0.003]. CONCLUSION: Artificial natural light in the classroom of primary schools can result in reducing incidence rate of myopia during a period of three years.

12.
Int J Biol Macromol ; : 132514, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768917

RESUMO

Accurate early diagnosis of rheumatoid arthritis (RA) and prompt implementation of appropriate treatment approaches are crucial. In the clinic, magnetic resonance imaging (MRI) has been recommended for implementation to aid in the precise and early diagnosis of RA. However, they are still limited by issues regarding specificity and their ability to capture comprehensive information about the pathological features. Herein, a responsive multifunctional nanoplatform with targeting capabilities (hMnO2-IR@BSA-PEG-FA) is constructed through integrating a RA microenvironment-responsive MRI contrast agent with activatable near-infrared (NIR) fluorescence imaging, aiming to simultaneously acquire comprehensive pathological features of RA from both structural and molecular imaging perspectives. Moreover, taking advantage of its targeting function to synovial microphages, hMnO2-IR@BSA-PEG-FA demonstrated a remarkable capability to accumulate effectively at the synovial tissue. Additionally, hMnO2 responded to the mild acidity and reactive oxygen species (ROS) in the RA microenvironment, leading to the controlled release of Mn2+ ions and IR780, which separately caused special MRI contrast enhancement of synovial tissues and sensitively demonstrated the presence of ROS and weakly acid microenvironment by NIR imaging. Consequently, hMnO2-IR@BSA-PEG-FA is expected to serve as a promising nanoplatform, offering valuable assistance in the precise diagnosis of early-stage RA by specially providing comprehensive information about the pathological features.

13.
J Chromatogr Sci ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757928

RESUMO

In this work, a magnetic adsorption material based on metal-organic framework (Fe3O4@ZnAl-LDH@MIL-53(Al)) was synthesized and used as an adsorbent in the process of magnetic solid phase extraction. Then, a high-performance liquid chromatograph was used to quantitatively detect triazole fungicides in samples. In order to verify the successful preparation of the material, a series of characterization analyses were carried out. Besides, the key parameters that may affect the extraction efficiency have been optimized, and under optimal conditions the three triazole fungicides showed good linearity in the range of 10-1000 µg/L (R2 ≥ 0.9796); Limit of detections were ranged from 0.013 to 0.030 µg/mL. Finally, the established method was applied to the detection of triazole fungicides in four fresh juice samples. The results showed that the target analyte was not detected in all the test samples. By detecting the recoveries (73.3-104.3%) and coefficient variation (RSD ≤ 6.8%) of triazole fungicides in fortified samples, it proved that this established method meets the requirements of pesticide residue analysis and showed excellent application potential.

14.
Chemphyschem ; : e202300880, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705870

RESUMO

Recent research on mechano-radicals has provided valuable insights into self-growth and adaptive responsive materials. Typically, mechanophores must remain inert in the absence of force but respond quickly to external tension before other linkages within the polymer network. Azo compounds exhibit promising combinations of mechanical stability and force-triggered reactivity, making them widely used as mechano-radicals in force-responsive materials. However, the activation conditions and behavior of azo compounds have yet to be quantitatively explored. In this study, we investigated the mechanical strength of three azo compounds using single-molecule force spectroscopy. Our results revealed that these compounds exhibit rupture forces ranging from ~500 to 1000 pN, at a loading rate of 3×104 pN s-1. Importantly, these mechanophores demonstrate distinct kinetic properties. Their unique mechanical attributes enable azo bond scission and free radical generation before causing major polymer backbone damage of entire material during polymer network deformation. This fundamental understanding of mechanophores holds significant promise for the development of self-growth materials and their related applications.

15.
Exp Ther Med ; 27(5): 210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590566

RESUMO

Rhinovirus (RV) is the most common respiratory virus affecting humans. The majority of asthma deteriorations are triggered by RV infections. However, whether the effects of RV single- and double-stranded RNA on asthma deterioration have common target genes needs to be further studied. In the present study, two datasets (GSE51392 and GSE30326) were used to screen for common differentially expressed genes (cDEGs). The molecular function, signaling pathways, interaction networks, hub genes, key modules and regulatory molecules of cDEGs were systematically analyzed using online tools such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, STRING and NetworkAnalyst. Finally, the hub genes STAT1 and IFIH1 were verified in clinical samples using reverse transcription-quantitative PCR (RT-qPCR). A total of 85 cDEGs were identified. Function analysis revealed that cDEGs served an important role in the innate immune response to viruses and its regulation. Signal transducer and activator of transcription 1 (STAT1), interferon induced with helicase C domain 1 (IFIH1), interferon regulatory factor 7 (IRF7), DExD/H box helicase 58 (DDX58) and interferon-stimulating gene 15 (ISG15) were detected to be hub genes based on the protein-protein interactions and six topological algorithms. A key module involved in influenza A, the Toll-like receptor signaling pathway, was identified using Cytoscape software. The hub genes were regulated by GATA-binding factor 2 and microRNA-146a-5p. In addition, RT-qPCR indicated that the expression levels of the hub genes STAT1 and IFIH1 were low during asthma deterioration compared with post-treatment recovery samples. The present study enhanced the understanding of the mechanism of RV-induced asthma deterioration.

16.
J Agric Food Chem ; 72(15): 8840-8848, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570314

RESUMO

A series of new 4-amino-3,5-dicholo-6-(5-aryl-substituted-1H-pyrazol-1-yl)-2-picolinic acid compounds were designed and prepared to discover herbicidal molecules. The inhibitory activities of all new compounds against the root growth ofArabidopsis thaliana were assayed. On the whole, the new synthesized compounds displayed good inhibition effects and had excellent herbicidal activities on root growth of weed at 500 µM. Importantly, a selection of compounds demonstrated comparable herbicidal properties to picloram. At the dosage of 250 g/ha, most of the compounds showed a 100% postemergence herbicidal activity to control Chenopodium album and Amaranthus retroflexus. Using compound V-2, the mechanism of action was investigated based on a phenotype study using AFB5-deficient Arabidopsis thaliana. It was found that the novel 6-pyrazolyl-2-picolinic acids were auxinic compounds. In addition, it was proposed that V-2 may be an immune activator due to its upregulation of defense genes and the increased content of jasmonic acid.


Assuntos
Arabidopsis , Herbicidas , Herbicidas/farmacologia , Relação Estrutura-Atividade , Ácidos Picolínicos/farmacologia , Arabidopsis/genética
17.
J Nanobiotechnology ; 22(1): 148, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570776

RESUMO

Kaempferol (KA), an natural antioxidant of traditional Chinese medicine (TCM), is extensively used as the primary treatment for inflammatory digestive diseases with impaired redox homeostasis. Severe acute pancreatitis (SAP) was exacerbated by mitochondrial dysfunction and abundant ROS, which highlights the role of antioxidants in targeting mitochondrial function. However, low bioavailability and high dosage of KA leading to unavoidable side effects limits clinical transformation. The mechanisms of KA with poor bioavailability largely unexplored, hindering development of the efficient strategies to maximizing the medicinal effects of KA. Here, we engineered a novel thioketals (TK)-modified based on DSPE-PEG2000 liposomal codelivery system for improving bioavailability and avoiding side effects (denotes as DSPE-TK-PEG2000-KA, DTM@KA NPs). We demonstrated that the liposome exerts profound impacts on damaging intracellular redox homeostasis by reducing GSH depletion and activating Nrf2, which synergizes with KA to reinforce the inhibition of inadequate fission, excessive mitochondrial fusion and impaired mitophagy resulting in inflammation and apoptosis; and then, the restored mitochondrial homeostasis strengthens ATP supply for PAC renovation and homeostasis. Interestingly, TK bond was proved as the main functional structure to improve the above efficacy of KA compared with the absence of TK bond. Most importantly, DTM@KA NPs obviously suppresses PAC death with negligible side effects in vitro and vivo. Mechanismly, DTM@KA NPs facilitated STAT6-regulated mitochondrial precursor proteins transport via interacting with TOM20 to further promote Drp1-dependent fission and Pink1/Parkin-regulated mitophagy with enhanced lysosomal degradation for removing damaged mitochondria in PAC and then reduce inflammation and apoptosis. Generally, DTM@KA NPs synergistically improved mitochondrial homeostasis, redox homeostasis, energy metabolism and inflammation response via regulating TOM20-STAT6-Drp1 signaling and promoting mitophagy in SAP. Consequently, such a TCM's active ingredients-based nanomedicine strategy is be expected to be an innovative approach for SAP therapy.


Assuntos
Quempferóis , Pancreatite , Humanos , Doença Aguda , Quempferóis/farmacologia , Quempferóis/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Inflamação/metabolismo
18.
J Nanobiotechnology ; 22(1): 154, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581017

RESUMO

The combination of immune checkpoint inhibitors and immunogenic cell death (ICD) inducers has become a promising strategy for the treatment of various cancers. However, its efficacy remains unmet because of the dense stroma and defective vasculatures in the tumor microenvironment (TME) that restricts the intratumoral infiltration of cytotoxic T lymphocytes (CTLs). Herein, cancer-associated fibroblasts (CAFs)-targeted nanoemulsions are tailored to combine the ICD induction and the TME reprogramming to sensitize checkpoint blockade immunotherapy. Melittin, as an ICD inducer and an antifibrotic agent, is efficiently encapsulated into the nanoemulsion accompanied by a nitric oxide donor to improve its bioavailability and tumor targeting. The nanoemulsions exhibited dual functionality by directly inducing direct cancer cell death and enhancing the tumoral immunogenicity, while also synergistically reprogramming the TME through reversing the activated CAFs, decreasing collagen deposition and restoring tumor vessels. Consequently, these nanemulsions successfully facilitated the CTLs infiltration and suppressing the recruitment of immunosuppressive cells. A combination of AE-MGNPs and anti-CTLA-4 antibody greatly elicited a striking level of antitumor T-cell response to suppress tumor growth in CAFs-rich colorectal tumor models. Our work emphasized the integration of the ICD induction with simultaneous modulation of the TME to enhance the sensitivity of patients to checkpoint blockade immunotherapy.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Neoplasias , Humanos , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia , Linhagem Celular Tumoral
19.
medRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585784

RESUMO

Background: SARS-CoV-2 vaccination has reduced hospitalization and mortality for nursing home residents (NHRs). However, emerging variants coupled with waning immunity, immunosenescence, and variability of vaccine efficacy undermine vaccine effectiveness. We therefore need to update our understanding of the immunogenicity of the most recent XBB.1.5 monovalent vaccine to variant strains among NHRs. Methods: The current study focuses on a subset of participants from a longitudinal study of consented NHRs and HCWs who have received serial blood draws to assess immunogenicity with each SARS-CoV-2 mRNA vaccine dose. We report data on participants who received the XBB.1.5 monovalent vaccine after FDA approval in Fall 2023. NHRs were classified based on whether they had an interval SARS-CoV-2 infection between their first bivalent vaccine dose and their XBB.1.5 monovalent vaccination. Results: The sample included 61 NHRs [median age 76 (IQR 68-86), 51% female] and 28 HCWs [median age 45 (IQR 31-58), 46% female). Following XBB.1.5 monovalent vaccination, there was a robust geometric mean fold rise (GMFR) in XBB.1.5-specific neutralizing antibody titers of 17.3 (95% confidence interval [CI] 9.3, 32.4) and 11.3 (95% CI 5, 25.4) in NHRs with and without interval infection, respectively. The GMFR in HCWs was 13.6 (95% CI 8.4,22). Similarly, we noted a robust GMFR in JN.1-specific neutralizing antibody titers of 14.9 (95% CI 7.9, 28) and 6.5 (95% CI 3.3, 13.1) among NHRs with and without interval infection, and a GMFR of 11.4 (95% CI 6.2, 20.9) in HCWs. NHRs with interval SARS-CoV-2 infection had higher neutralizing antibody titers across all analyzed strains following XBB.1.5 monovalent vaccination, compared to NHRs without interval infection. Conclusion: The XBB.1.5 monovalent vaccine significantly elevates Omicron-specific neutralizing antibody titers to XBB.1.5 and JN.1 strains in both NHRs and HCWs. This response was more pronounced in individuals known to be infected with SARS-CoV-2 since bivalent vaccination. Impact Statement: All authors certify that this work entitled " Broad immunogenicity to prior strains and JN.1 variant elicited by XBB.1.5 vaccination in nursing home residents " is novel. It shows that the XBB.1.5 monovalent vaccine significantly elevates Omicron-specific neutralizing antibody titers in both nursing home residents and healthcare workers to XBB and BA.28.6/JN.1 strains. This work is important since JN.1 increased from less than 0.1% to 94% of COVID-19 cases from October 2023 to February 2024 in the US. This information is timely given the CDC's latest recommendation that adults age 65 and older receive a Spring 2024 XBB booster. Since the XBB.1.5 monovalent vaccine produces compelling immunogenicity to the most prevalent circulating JN.1 strain in nursing home residents, our findings add important support and rationale to encourage vaccine uptake. Key Points: Emerging SARS-CoV-2 variants together with waning immunity, immunosenescence, and variable vaccine efficacy reduce SARS-CoV-2 vaccine effectiveness in nursing home residents.XBB.1.5 monovalent vaccination elicited robust response in both XBB.1.5 and JN.1 neutralizing antibodies in nursing home residents and healthcare workers, although the absolute titers to JN.1 were less than titers to XBB.1.5Why does this paper matter? Among nursing home residents, the XBB.1.5 monovalent SARS-CoV-2 vaccine produces compelling immunogenicity to the JN.1 strain, which represents 94% of all COVID-19 cases in the U.S. as of February 2024.

20.
Plant Dis ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587797

RESUMO

Tomato yellow mottle-associated virus (TYMaV) belongs to the genus Cytorhabdovirus in the family Rhabdoviridae and has been reported to infect a variety of Solanaceae crops, such as Solanum lycopersicum, S. nigrum, Capsicum annuum and Nicotiana benthamiana (Li et al. 2022, Li et al. 2023, Xu et al. 2017, Zhou et al. 2019). In August 2022, about 500 out of 2000 tobacco (N. tabacum) plants showing leaf distortion, crinkling and mosaic symptoms were found in one tobacco growing field in Xingren City, Guizhou Province, China. To identify the causal pathogen(s), leaves from 20 symptomatic tobacco plants were collected and pooled to perform small RNA deep sequencing (sRNA-Seq) and assembly. Briefly, total RNA was extracted with TRIzol Reagent (Takara, Kusatsu, Japan). A small RNA cDNA library was constructed by the small RNA Sample Pre Kit. sRNA-Seq was performed with an Illumina NovaSeq 6000 platform. About 29 million reads were obtained and 334 contigs generated after removal of host-derived sequences. Among them, 31 unique contigs mapped to the TYMaV genome (NC_034240.1), covering 28.43% of the genome with the mean read coverage of 0.92%. Meanwhile, 226 contigs mapped to the genome of a potyvirus, chilli veinal mottle virus (ChiVMV, NC_005778.1), covering 88.79% of the genome with the mean read coverage of 0.83%. To verify the sRNA-Seq result for TYMaV identification, reverse transcription (RT)- PCR was performed with specific primers TYMaV-F (5'-CTGACGTAGTGTTGGCAGAT-3') and TYMaV-R (5'-AACCTCCATGCAGAACCATGG-3'). The expected-size 936-bp fragment was amplified from total RNA of all 20 samples. Dot enzyme-linked immunosorbent assays (Dot-ELISA) with antibody for TYMaV (kindly provided by Dr. Zhenggang Li from Guangdong Academy of Agricultural Sciences) were performed and further verified TYMaV infection. In addition, five asymptomatic tobacco plants from the same field as controls were used to detect TYMaV by RT-PCR and Dot-ELISA, and all samples showed negative test results. Subsequently, 17 primer pairs (Supplementary Table 1) were used to obtain the full-length sequence of TYMaV from a single positive tobacco sample by RT-PCR, followed by Sanger sequencing at Sangon Biotech (Shanghai, China). The resulting amplicon sequences were assembled into a nearly full-length genome sequence of a TYMaV isolate from tobacco in Guizhou (TYMaV-GZ). BLASTn analysis of the 13, 393 nt-long sequence (GeneBank accession number, PP444718) revealed 84.7% and 87.2% nt sequence identity with the TYMaV tomato isolate (KY075646.1) and the TYMaV S. nigrum isolate (MW527091.1), respectively. Moreover, five S. nigrum plants showing leaf crinkling and mosaic symptoms from tobacco fields tested positive for TYMaV by RT-PCR assay, suggesting a potential spread of TYMaV between tobacco and S. nigrum, which may serve as a reservoir for the virus in the tobacco fields. However, the transmission route of TYMaV remains unknown, and further verification is needed. To our knowledge, this is the first report of TYMaV infecting tobacco crop in China. It will be important to assess the potential economic importance of TYMaV to tobacco production in China and elsewhere, and to elucidate the respective roles of this virus and ChiVMV in the leaf distorting and yellowing symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...