Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 438: 137981, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38007950

RESUMO

Comprehensive attention should be paid to the potential food spoilage in food transport. However, there is a problem of freshness destruction by repeated freezing and thawing during the cold chain transport. Herein, a fluorescent hydrogel with N-doped green-emitting carbon dots (N-GCDs), bovine serum albumin-gold nanoclusters (BSA-AuNCs) as fluorescent probes and polyvinyl alcohol-sodium alginate hydrogel as carrier matrix was developed to continuously detect temperature and freshness. Due to the solvatochromic effect of N-GCDs, when the temperature surpassed the threshold, the mixture of water and dimethyl sulfoxide underwent a phase transition and melted into the gel, changing the fluorescence color to realize the temperature monitoring. Then, due to the pH effect of BSA-AuNCs, the gel could respond to pH changes in food deterioration to monitor the food freshness. Thus, the changes of both fluorescence color and intensity of the hydrogel provides a new method for visual and portable authenticity of food freshness.


Assuntos
Hidrogéis , Refrigeração , Temperatura , Soroalbumina Bovina , Corantes Fluorescentes
2.
Angew Chem Int Ed Engl ; 63(4): e202313952, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37994255

RESUMO

16ß-Methylcorticoids are among the most important glucocorticoid steroids for the treatment of various dermatological disorders, respiratory infections, and other allergic reactions elicited during inflammatory responses of the human body. Betamethasone dipropionate, clobetasol propionate, and beclomethasone dipropionate are particularly noteworthy for their synthetic intractability. Despite five decades of research, these 16ß-methylcorticoids have remained challenging synthetic targets owing to insurmountable issues of reactivity, selectivity, and cost efficiency associated with all previously explored strategies. We herein report our practicability-oriented strategy toward the unified stereoselective synthesis of 16ß-methylcorticoids in 12.6-14.0 % overall yield from commercially available 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD). In this approach, the chiral C16ß-Me and C17α-OH groups of the corticosteroid D ring were installed via a substrate-controlled diastereo- and enantioselective Mn-catalyzed oxidation-reduction hydration of Δ4,9(11),16 -triene-3,20-dione. The C1-C2 double bond of the corticosteroid A ring was constructed using an unprecedented engineered 3-ketosteroid-Δ1 -dehydrogenase (MK4-KstD)-catalyzed regioselective Δ1 -dehydrogenation of Δ4,9(11) -diene-3,21-dione. This strategy provides a general method and a key precursor for the divergent synthesis of a variety of glucocorticoids and related steroidal drugs.


Assuntos
Beclometasona , Clobetasol , Humanos , Clobetasol/uso terapêutico , Betametasona/uso terapêutico , Esteroides , Corticosteroides
3.
Vaccines (Basel) ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140261

RESUMO

Feline calicivirus (FCV) is one of the most important pathogens causing upper respiratory tract diseases in cats, posing a serious health threat to these animals. At present, FCV is mainly prevented through vaccination, but the protective efficacy of vaccines in China is limited. In this study, based on the differences in capsid proteins of isolates from different regions in China, as reported in our previous studies, seven representative FCV epidemic strains were selected and tested for their viral titers, virulence, immunogenicity, and extensive cross-protection. Subsequently, vaccine strains were selected to prepare inactivated vaccines. The whole-genome sequencing and analysis results showed that these seven representative FCV strains and 144 reference strains fell into five groups (A, B, C, D, and E). The strains isolated in China mainly fall into groups C and D, exhibiting regional characteristics. These Chinese isolates had a distant evolutionary relationship and low homology with the current FCV-255 vaccine strain. The screened FCV-HB7 and FCV-HB10 strains displayed desirable in vitro culture characteristics, with the highest virus proliferation titers (109.5 TCID50/mL) at 36 h post inoculation at a dose of 0.01 MOI. All five cats infected intranasally with FCV-HB7 or FCV-HB10 strains showed obvious clinical symptoms of FCV. The symptoms of cats infected with the FCV-HB7 strain were more severe than those infected with the FCV-HB10 strain. Both the single-strain inactivated immunization and combined bivalent inactivated vaccine immunization of FCV-HB7 and FCV-HB10 induced high neutralizing antibody titers in five cats immunized. Moreover, bivalent inactivated vaccine immunization protected cats from FCV-HB7 and FCV-HB10 strains. The cross-neutralizing antibody titer against seven representative FCV epidemic strains achieved by combined bivalent inactivated vaccine immunization was higher than that achieved by single-strain immunization, which was much higher than that achieved by commercial vaccine FCV-255 strain immunization. The above results suggest that the FCV-HB7 and FCV-HB10 strains screened in this study have great potential to become vaccine strains with broad-spectrum protective efficacy. However, their immune protective efficacy needs to be further verified by multiple methods before clinical application.

4.
Small Methods ; 7(11): e2300513, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530204

RESUMO

Viscous emulsions with poor fluidity and high adhesion are extremely difficult to separate. Herein, high-flux separation of viscous emulsions is realized by developing structural engineered collagen fibers (CFs)-based composite membrane that featured 3D conductive hierarchical fiber structure with the spaced carbon nanofibers (CNFs) and activated carbon (AC) serving as conductive network and competitive adsorption-based demulsifying sites, respectively. The as-designed membrane structure boosts fast spreading of emulsion droplets on membrane surface aided by the synergistic effect of joule heat in situ generated by the spaced CNFs and the capillary effect derived from CFs, which guarantees the full contact of viscous emulsions with the spaced AC for achieving ultra-efficient demulsifying. The permeation of resultant oily filtrate is accelerated by the capillary effect of hierarchically fibrous structured CFs to exhibit fast transport kinetics, therefore accomplishing high-flux separation. The structural engineered membrane achieves high-performance separation toward different viscous emulsions (55.4-123.7 mPa·s) with separation efficiency >99.9% and flux high up to 259 L m-2 h-1 . The investigations provide a novel structural engineering strategy for realizing high-performance separation of viscous emulsions.

5.
ACS Omega ; 8(5): 4639-4648, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777579

RESUMO

Organic dyes can produce harmful effects on the water environment, such as affecting the growth of aquatic organisms, reducing the transparency of water bodies, and causing eutrophication of water bodies, so it is necessary to mitigate the hazards of organic dyes. In this study, a metal-organic framework [NH2-MIL-101(Fe)] was synthesized by the solvothermal method as a carrier for the in situ uniform deposition of AgCl nanoparticles on its surface, which was successfully used for both adsorption and degradation of Congo red. Adsorption results showed that the adsorption kinetics conformed to the proposed secondary adsorption kinetics equation with a maximum adsorption capacity of 248.4 mg·g-1. Furthermore, the degradation results indicated that with the aid of sodium borohydride as a reducing agent, the degradation of Congo red followed pseudo-first-order kinetics with a degradation rate of 0.077 min-1, and the complete degradation of Congo red was finished within 18 min. Therefore, AgCl/NH2-MIL-101(Fe) may find a potential application in the removal of dyes from wastewater.

6.
Science ; 379(6632): 567-572, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758082

RESUMO

Finely preserved fossil assemblages (lagerstätten) provide crucial insights into evolutionary innovations in deep time. We report an exceptionally preserved Early Triassic fossil assemblage, the Guiyang Biota, from the Daye Formation near Guiyang, South China. High-precision uranium-lead dating shows that the age of the Guiyang Biota is 250.83 +0.07/-0.06 million years ago. This is only 1.08 ± 0.08 million years after the severe Permian-Triassic mass extinction, and this assemblage therefore represents the oldest known Mesozoic lagerstätte found so far. The Guiyang Biota comprises at least 12 classes and 19 orders, including diverse fish fauna and malacostracans, revealing a trophically complex marine ecosystem. Therefore, this assemblage demonstrates the rapid rise of modern-type marine ecosystems after the Permian-Triassic mass extinction.


Assuntos
Organismos Aquáticos , Evolução Biológica , Biota , Fósseis , Animais , China , Extinção Biológica
7.
J Hazard Mater ; 443(Pt A): 130233, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308933

RESUMO

Ochratoxin A (OTA), which has strong hepatotoxicity and nephrotoxicity, can accumulate in the human body through the food chain; thus, the selective and effective detection of OTA is urgently required for food security. Nanozymes with hyperfine size and shape control have attracted attention because of their controllable structure and intrinsic activity. Herein, CuFe-bimetal coordinated N-doped carbon (Cu@Fe-NC) with morphology-driven peroxidase-mimicking activity was synthesized using Cu2O with specific polygonal cubes and fully exposed {111} crystalline facets as the template to produce a CuFe-bimetallic metal organic framework (MOF) and further treating CuFe-MOF with high-temperature pyrolysis. N-doping can confer electronegativity to exhibit high affinity, while the large surface area of the porous carbon support can facilitate rapid adsorption-desorption equilibrium. Using the peroxidase-mimicking Cu@Fe0.5-NC as a carrier, a versatile immunoassay for the detection of OTA was implemented based on the ratiometric fluorescence and the localized surface plasmon resonance peak shift, achieving a detection limit of 0.52 ng/L in the range of 0.001-10 µg/L. Therefore, the strategy of enhancing enzyme-mimicking activity using specific shapes and crystalline facets may open new avenues for food and environmental analysis.


Assuntos
Estruturas Metalorgânicas , Ocratoxinas , Humanos , Estruturas Metalorgânicas/química , Peroxidase , Colorimetria , Peroxidases/química , Oxirredutases , Carbono/química , Corantes
8.
Heart Surg Forum ; 25(4): E536-E539, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36052906

RESUMO

BACKGROUND: The anomalous origin of the left common carotid artery from the pulmonary artery is extremely scarce. At present, there are few relevant research and medical treatment data. This case is intended to provide relevant information and share treatment experiences. Case information: A 6-year-old child was diagnosed with patent ductus arteriosus and underwent surgery five years ago with occasional dizziness. After examination, it was found that the abnormality of her left common carotid artery originated from the pulmonary artery, and the patient underwent arterial ligation with the monitoring of cerebral oxygen consumption by near-infrared spectroscopy after careful preoperative evaluation. At present, it has been two years after the operation, and the patient is in good condition and has received regular follow-up. CONCLUSION: For patients with an abnormal left common carotid artery from the pulmonary artery, after careful preoperative evaluation such as cerebral angiography, under the monitoring of cerebral oxygen consumption by near-infrared spectroscopy, ligation of the proximal end of the artery of abnormal origin is safe and feasible.


Assuntos
Tontura , Permeabilidade do Canal Arterial , Artéria Carótida Primitiva , Criança , Permeabilidade do Canal Arterial/cirurgia , Feminino , Humanos , Ligadura , Artéria Pulmonar/cirurgia
9.
Front Cardiovasc Med ; 9: 935054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966541

RESUMO

Mounting evidence suggests that the phenotypic transformation of venous smooth muscle cells (SMCs) from differentiated (contractile) to dedifferentiated (proliferative and migratory) phenotypes causes excessive proliferation and further migration to the intima leading to intimal hyperplasia, which represents one of the key pathophysiological mechanisms of vein graft restenosis. In recent years, numerous miRNAs have been identified as specific phenotypic regulators of vascular SMCs (VSMCs), which play a vital role in intimal hyperplasia in vein grafts. The review sought to provide a comprehensive overview of the etiology of intimal hyperplasia, factors affecting the phenotypic transformation of VSMCs in vein graft, and molecular mechanisms of miRNAs involved in SMCs phenotypic modulation in intimal hyperplasia of vein graft reported in recent years.

10.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35587127

RESUMO

Rice (Oryza sativa) is one of our main food crops, feeding ∼3.5 billion people worldwide. An increasing number of studies note the importance of the cytoskeleton, including actin filaments and microtubules, in rice development and environmental responses. Yet, reliable in vivo cytoskeleton markers are lacking in rice, which limits our knowledge of cytoskeletal functions in living cells. Therefore, we generated bright fluorescent marker lines of the actin and microtubule cytoskeletons in rice, suitable for live-cell imaging in a wide variety of rice tissues. Using these lines, we show that actin bundles and microtubules engage and co-function during pollen grain development, how the cytoskeletal components are coordinated during root cell development, and that the actin cytoskeleton is robust and facilitates microtubule responses during salt stress. Hence, we conclude that our cytoskeletal marker lines, highlighted by our findings of cytoskeletal associations and dynamics, will substantially further future investigations in rice biology.


Assuntos
Actinas , Oryza , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Humanos , Microtúbulos/metabolismo , Oryza/metabolismo
11.
Virol Sin ; 37(2): 277-283, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35249853

RESUMO

Since the anti-inflammatory effect of hydrogen has been widely known, it was supposed that hydrogen could suppress tissue damage by inhibiting virus-related inflammatory reactions. However, hydrogen is slightly soluble in water, which leads to poor effect of oral hydrogen-rich water therapy. In this study, the nano-bubble hydrogen water (nano-HW) (about 0.7 â€‹ppm) was prepared and its therapeutic effect against viral infection was investigated by utilizing spring viraemia of carp virus (SVCV)-infected zebrafish as model. Three-month-old zebrafish were divided into nano-HW treatment-treated group and aquaculture water treated group (control group). The results revealed that the cumulative mortality rate of SVCV-infected zebrafish was reduced by 40% after treatment with nano-bubble hydrogen water, and qRT-PCR results showed that SVCV replication was significantly inhibited. Histopathological examination staining showed that SVCV infection caused tissue damage was greatly alleviated after treatment with nano-bubble hydrogen water. Futhermore, SVCV infection caused reactive oxygen species (ROS) accumulation was significantly reduced upon nano-HW treatment. The level of proinflammatory cytokines IL-1ß, IL-8, and TNF-α was remarkably reduced in the nano-HW-treated group in vivo and in vitro. Taken together, our data demonstrated for the first time that nano-HW could inhibit the inflammatory response caused by viral infection in zebrafish, which suggests that nano-HW can be applied to antiviral research,and provides a novel therapeutic strategy for virus-caused inflammation related disease.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Animais , Doenças dos Peixes/tratamento farmacológico , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Inflamação/tratamento farmacológico , Rhabdoviridae , Infecções por Rhabdoviridae/tratamento farmacológico , Água , Peixe-Zebra
12.
Ibrain ; 8(2): 190-198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37786885

RESUMO

Cerebral infarction, a common central nervous system complication after adult cardiac surgery, is one of the main factors leading to the poor prognosis of cardiac surgery patients besides cardiac insufficiency. However, there is currently no effective treatment for cerebral infarction. Therefore, early prevention and diagnosis of postoperative cerebral infarction are particularly important. There are many factors and mechanisms during and after cardiac surgery that play an important role in the occurrence of postoperative cerebral infarction, such as intraoperative embolism, systemic inflammatory response syndrome, atrial fibrillation, temperature regulation, blood pressure control, use of postoperative blood products, and so forth. The mechanism by which most risk factors act on the human body, leading to postoperative cerebral infarction, is not well understood, and further research is needed. Therefore, this paper aims to summarize and explain the relevant risk factors, mechanisms, clinical signs, imaging characteristics, and early diagnosis methods of cerebral infarction complications after cardiac surgery, and provides useful data for the establishment of related diagnosis and treatment standards.

13.
Adv Mater ; 34(46): e2107891, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34894376

RESUMO

Separation plays a critical role in a broad range of industrial applications. Developing advanced separation materials is of great significance for the future development of separation technology. Collagen fibers (CFs), the typical structural proteins, exhibit unique structural hierarchy, amphiphilic wettability, and versatile chemical reactivity. These distinctive properties provide infinite possibilities for the rational design of advanced separation materials. During the past 2 decades, many progressive achievements in the development of CFs-derived advanced separation materials have been witnessed already. Herein, the CFs-based separation materials are focused on and the recent progresses in this topic are reviewed. CFs widely existing in animal skins display unique hierarchically fibrous structure, amphiphilicity-enabled surface wetting behaviors, multi-functionality guaranteed covalent/non-covalent reaction versatility. These outstanding merits of CFs bring great opportunities for realizing rational design of a variety of advanced separation materials that were capable of achieving high-performance separations to diverse specific targets, including oily pollutants, natural products, metal ions, anionic contaminants and proteins, etc. Besides, the important issues for the further development of CFs-based advanced separation materials are also discussed.


Assuntos
Animais , Molhabilidade , Óleos/química , Colágeno
14.
Phys Chem Chem Phys ; 23(35): 19862-19871, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525133

RESUMO

Bimodal HDPE models were designed for extension-induced crystallization imitating the architecture of industrial bimodal HDPE copolymerized with ethylene and 1-butene, 1-hexene, or 1-octene. Crystallites of bimodal HDPE experienced the emergence of precursors, shish nuclei, and lamellae. The compact conformation of branched polymers impeded the rolling-over, deposition, and folding of chains on the substrate, and thus the formation of nuclei and lamella. Moreover, this retardation was intensified with the rising branch density and length, causing a depression of crystallinity and an increment of tie-chains concentration. Besides, when branches were all located on long chains, the compact conformation enlarged the resistance to the disentanglement of main chains, thus relatively fewer branched long chains were involved in the precursors or nuclei, resulting in the attenuation of lamella formation. Furthermore, for ethyl branched polymers, the coexistent orthorhombic and monoclinic crystallites were built up, and a few expanded monoclinic cells occurred for butyl branches because of the larger butyl reeling into lamella, while hexagonal crystals were created for ethyl/1-hexyl copolymers because of cocrystallization. Additionally, relative to ethyl, larger butyl and hexyl were preferential to be repelled outside crystals to form tie-chains, and hexyl branched polymers acquired relatively fewer tie-chains because of hexagonal eutectoid.

15.
ChemSusChem ; 14(2): 590-594, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33305485

RESUMO

Furfural is a prominent, non-petroleum-based chemical feedstock material, derived from abundantly available hemicellulose. Hence, its derivatization into other useful biobased chemicals is a subject of high interest in contemporary academic and industrial research activities. While most strategies to convert furfural require energy-intensive reaction routes, the use of electrochemical activation allows to provide a sustainable and green alternative. Herein, a disparate approach for the conversion of furfural is reported based on a divergent paired electrochemical conversion, enabling the simultaneous production of 2(5H)-furanone via an anodic oxidation, and the generation of furfuryl alcohol and/or hydrofuroin via a cathodic reduction. Using water as solvent and NaBr as supporting electrolyte and electron-mediator, a green and sustainable process was developed, which maximizes productive use of electricity and minimizes byproduct formation.

16.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545623

RESUMO

The vacuole is indispensable for cells to maintain their water potential and to respond to environmental changes. Nevertheless, investigations of vacuole morphology and its functions have been limited to Arabidopsis thaliana with few studies in the model crop rice (Oryza sativa). Here, we report the establishment of bright rice vacuole fluorescent reporter systems using OsTIP1;1, a tonoplast water channel protein, fused to either an enhanced green fluorescent protein or an mCherry red fluorescent protein. We used the corresponding transgenic rice lines to trace the vacuole morphology in roots, leaves, anthers, and pollen grains. Notably, we observed dynamic changes in vacuole morphologies in pollen and root epidermis that corresponded to their developmental states as well as vacuole shape alterations in response to abiotic stresses. Our results indicate that the application of our vacuole markers may aid in understanding rice vacuole function and structure across different tissues and environmental conditions in rice.


Assuntos
Aciltransferases/genética , Proteínas Luminescentes/genética , Oryza/crescimento & desenvolvimento , Vacúolos/ultraestrutura , Aciltransferases/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Oryza/genética , Oryza/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico , Vacúolos/metabolismo , Proteína Vermelha Fluorescente
17.
Acc Chem Res ; 52(10): 2858-2869, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31573791

RESUMO

In the past decade, research into continuous-flow chemistry has gained a lot of traction among researchers in both academia and industry. Especially, microreactors have received a plethora of attention due to the increased mass and heat transfer characteristics, the possibility to increase process safety, and the potential to implement automation protocols and process analytical technology. Taking advantage of these aspects, chemists and chemical engineers have capitalized on expanding the chemical space available to synthetic organic chemists using this technology. Electrochemistry has recently witnessed a renaissance in research interests as it provides chemists unique and tunable synthetic opportunities to carry out redox chemistry using electrons as traceless reagents, thus effectively avoiding the use of hazardous and toxic reductants and oxidants. The popularity of electrochemistry stems also from the potential to harvest sustainable electricity, derived from solar and wind energy. Hence, the electrification of the chemical industry offers an opportunity to locally produce commodity chemicals, effectively reducing inefficiencies with regard to transportation and storage of hazardous chemicals. The combination of flow technology and electrochemistry provides practitioners with great control over the reaction conditions, effectively improving the reproducibility of electrochemistry. However, carrying out electrochemical reactions in flow is more complicated than just pumping the chemicals through a narrow-gap electrolytic cell. Understanding the engineering principles behind the observations can help researchers to exploit the full potential of the technology. Thus, the prime objective of this Account is to provide readers with an overview of the underlying engineering aspects which are associated with continuous-flow electrochemistry. This includes a discussion of relevant mass and heat transport phenomena encountered in electrochemical flow reactors. Next, we discuss the possibility to integrate several reaction steps in a single streamlined process and the potential to carry out challenging multiphase electrochemical transformations in flow. Due to the high control over mass and heat transfer, electrochemical reactions can be carried out with great precision and reproducibility which provide opportunities to enhance and tune the reaction selectivity. Finally, we detail on the scale-up potential of flow electrochemistry and the importance of small interelectrode gaps on pilot and industrial-scale electrochemical processes. Each principle has been illustrated with a relevant organic synthetic example. In general, we have aimed to describe the underlying engineering principles in simple words and with a minimum of equations to attract and engage readers from both a synthetic organic chemistry and a chemical engineering background. Hence, we anticipate that this Account will serve as a useful guide through the fascinating world of flow electrochemistry.

18.
J Am Chem Soc ; 141(30): 11832-11836, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31303004

RESUMO

Sulfonyl fluorides are valuable synthetic motifs for a variety of applications, among which sulfur(VI) fluoride exchange-based "click chemistry" is currently the most prominent. Consequently, the development of novel and efficient synthetic methods to access these functional groups is of great interest. Herein, we report a mild and environmentally benign electrochemical approach to prepare sulfonyl fluorides using thiols or disulfides, as widely available starting materials, in combination with KF, as an inexpensive, abundant and safe fluoride source. No additional oxidants nor additional catalysts are required and, due to mild reaction conditions, the reaction displays a broad substrate scope, including a variety of alkyl, benzyl, aryl and heteroaryl thiols or disulfides.

19.
Org Process Res Dev ; 23(3): 403-408, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30906184

RESUMO

Furfural is considered to be an essential biobased platform molecule. Recently, its electrocatalytic hydrogenation is regarded as a more environmentally friendly process compared to traditional catalytic hydrogenation. In this study, a new, continuous-flow approach enabling furfural electrocatalytic reduction was developed. In an undivided multichannel electrochemical flow reactor at ambient temperature and pressure in basic reaction conditions, the yield of furfuryl alcohol reached up to 90% in only 10 min residence time. Interestingly, the faradaic efficiency was 90%, showing a good effectiveness of the consumed electrons in the generation of the targeted compound. Furthermore, the innovation lies in the direct electrolysis using the green solvent ethanol without the need for membrane separation or catalyst modification, which offers further proof for continuous and sustainable production in industry.

20.
J Flow Chem ; 8(3): 157-165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30931153

RESUMO

Electrochemistry constitutes a mild, green and versatile activation method of organic molecules. Despite these innate advantages, its widespread use in organic chemistry has been hampered due to technical limitations, such as mass and heat transfer limitations which restraints the scalability of electrochemical methods. Herein, we describe an undivided-cell electrochemical flow reactor with a flexible reactor volume. This enables its use in two different modes, which are highly relevant for flow chemistry applications, including a serial (volume ranging from 88 µL/channel up to 704 µL) or a parallel mode (numbering-up). The electrochemical flow reactor was subsequently assessed in two synthetic transformations, which confirms its versatility and scale-up potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...