Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400342, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740556

RESUMO

Here, we report the systematical synthesis of zeolite-templated carbon (ZTC) supported Ru and Rh mono- or bi-metallic electrocatalysts towards hydrogen evolution reaction (HER). The zeolite A or ZSM5 derived ZTC supports and metal sites were adjusted, and all electrocatalysts outperformed the commercial Pt/C electrocatalyst for HER performance. In particular, the RhRu/(ZTC/ZSM5) sample exhibited superior catalytic performance with the overpotential of 24.8 mV@10 mA·cm-2, and outstanding stability with 1 mV drop after 20000 cyclic voltammetry circles. This work offers a simple impregnation method for the synthesis of highly performed HER electrocatalysts supported on porous carbon.

2.
J Am Chem Soc ; 146(17): 11726-11739, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636166

RESUMO

Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.


Assuntos
Domínio Catalítico , Lisina , Prótons , Hidroxilação , Lisina/metabolismo , Lisina/química , Transporte de Elétrons , Tirosina/química , Tirosina/metabolismo , Simulação de Dinâmica Molecular , Estereoisomerismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Humanos , Ferro/química , Ferro/metabolismo
3.
Sci Total Environ ; 923: 171455, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438029

RESUMO

Neonicotinoid (NEO) insecticides have been frequently detected in natural aquatic environments. Nevertheless, the distribution of NEOs in artificial environments is not clear. The Beijing-Hangzhou Grand Canal is the longest canal in the world. The northern Jiangsu segment of the Grand Canal was selected to study the spatiotemporal variation and source of eight NEOs in the canal water and assess their ecological and health risks. The total NEO concentration in the canal water was 12-289 ng L-1 in the dry season and 18-373 ng L-1 in the wet season, which were within the concentration range in other 11 natural rivers worldwide. The average total NEO concentrations were not statistically different between the seasons; only the concentrations of imidaclothiz, thiacloprid (THI), acetamiprid, and dinotefuran were different. At city scale, the total NEO concentration in the dry season showed a decreasing trend along the water flow from Xuzhou City to Yangzhou City. The total NEO concentrations were found to be positively correlated with the sown area of farm crops and the rural labour force, indicating the agricultural influence on the spatial distribution of NEO concentrations. In the wet season, relatively high NEO concentrations were distributed in downstream sites under the influence of artificial regulation. The primary contributor to the NEO inputs into the canal was the nonpoint source in the dry and wet seasons, with a relative contribution of 68 %. THI, imidacloprid, clothianidin and thiamethoxan would produce chronic ecological risks in both seasons. Further consideration needs to be given to the above four NEOs and NEO mixtures. The human health risks that NEOs posed by drinking water were assessed based on the chronic daily intake (CDI). The maximum CDI for adults and children was lower than the reference doses. This suggested public health would not be at risk from canal water consumption.


Assuntos
Inseticidas , Tiazinas , Adulto , Criança , Humanos , Inseticidas/análise , Pequim , Neonicotinoides , Nitrocompostos , Água , Rios , China
4.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836804

RESUMO

Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms in the body, but its concentration is also linked to mood fluctuations as well as emotional well-being. In the present study, we present a computational analysis of the binding and activation of melatonin by various P450 isozymes that are known to yield different products and product distributions. In particular, the P450 isozymes 1A1, 1A2, and 1B1 generally react with melatonin to provide dominant aromatic hydroxylation at the C6-position, whereas the P450 2C19 isozyme mostly provides O-demethylation products. To gain insight into the origin of these product distributions of the P450 isozymes, we performed a comprehensive computational study of P450 2C19 isozymes and compared our work with previous studies on alternative isozymes. The work covers molecular mechanics, molecular dynamics and quantum mechanics approaches. Our work highlights major differences in the size and shape of the substrate binding pocket amongst the different P450 isozymes. Consequently, substrate binding and positioning in the active site varies substantially within the P450 isozymes. Thus, in P450 2C19, the substrate is oriented with its methoxy group pointing towards the heme, and therefore reacts favorably through hydrogen atom abstraction, leading to the production of O-demethylation products. On the other hand, the substrate-binding pockets in P450 1A1, 1A2, and 1B1 are tighter, direct the methoxy group away from the heme, and consequently activate an alternative site and lead to aromatic hydroxylation instead.


Assuntos
Isoenzimas , Melatonina , Humanos , Isoenzimas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Domínio Catalítico , Heme , Citocromo P-450 CYP1A2/metabolismo
5.
Environ Pollut ; 333: 122068, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330189

RESUMO

Neonicotinoids (NEOs) are the most widely used insecticides in the world. Nevertheless, the occurrence and distribution of NEOs in agricultural areas are not well understood. This study investigated the concentration, sources, ecological risks, and health risks of eight NEOs in the water of the Huai River, which flows through a typical agricultural area in China. The total concentration of NEOs in the river water ranged from 1.02 to 191.2 ng L-1, with an average of 64.1 ng L-1. Thiamethoxam was the dominant compound, with an average relative contribution of 42.5%. The average concentration of the total NEOs in downstream was significantly higher than that in upstream (p < 0.05). This may be related to the intensity of agricultural activities. The riverine NEO fluxes increased by approximately 12 times from the upper site to the lower site. More than 1.3 tons of NEOs in 2022 were transferred into Lake Hongze, the largest regulative lake on the Eastern Route of the South-to-North Water Diversion Project. Nonpoint sources were the major contributor to the total NEO inputs, and water use was the main output pathway. The risk assessment indicated that the individual NEOs in the river water presented low ecological risks. The NEO mixtures would produce chronic risks to aquatic invertebrates in 50% of the sampling sites, which were mostly distributed in downstream. Thus, more attention should be given to the downstream. Based on the Monte Carlo simulation, the health risks of NEOs via water consumption were estimated. The maximum chronic daily intakes were 8.4 × 10-4, 2.25 × 10-4, 1.27 × 10-4, 1.88 × 10-4 mg kg-1 day-1 for boys, girls, men, and women, respectively, which were approximately 2 orders of magnitude lower than the acceptable daily intake. Therefore, river water consumption would not be a concern for the public health.

6.
Chemistry ; 29(42): e202300271, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159057

RESUMO

High-valent metal-oxo species play critical roles in enzymatic catalysis yet their properties are still poorly understood. In this work we report a combined experimental and computational study into biomimetic iron(IV)-oxo and iron(III)-oxo complexes with tight second-coordination sphere environments that restrict substrate access. The work shows that the second-coordination sphere slows the hydrogen atom abstraction step from toluene dramatically and the kinetics is zeroth order in substrate. However, the iron(II)-hydroxo that is formed has a low reduction potential and hence cannot do OH rebound favorably. The tolyl radical in solution then reacts further with alternative reaction partners. By contrast, the iron(IV)-oxo species reacts predominantly through OH rebound to form alcohol products. Our studies show that the oxidation state of the metal influences reactivities and selectivities with substrate dramatically and that enzymes will likely need an iron(IV) center to catalyze C-H hydroxylation reactions.

7.
J Am Chem Soc ; 145(10): 5880-5887, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853654

RESUMO

The catalytic functions of metalloenzymes are often strongly correlated with metal elements in the active sites. However, dioxygen-activating nonheme quercetin dioxygenases (QueD) are found with various first-row transition-metal ions when metal swapping inactivates their innate catalytic activity. To unveil the molecular basis of this seemingly promiscuous yet metal-specific enzyme, we transformed manganese-dependent QueD into a nickel-dependent enzyme by sequence- and structure-based directed evolution. Although the net effect of acquired mutations was primarily to rearrange hydrophobic residues in the active site pocket, biochemical, kinetic, X-ray crystallographic, spectroscopic, and computational studies suggest that these modifications in the secondary coordination spheres can adjust the electronic structure of the enzyme-substrate complex to counteract the effects induced by the metal substitution. These results explicitly demonstrate that such noncovalent interactions encrypt metal specificity in a finely modulated manner, revealing the underestimated chemical power of the hydrophobic sequence network in enzyme catalysis.


Assuntos
Dioxigenases , Metais , Metais/química , Catálise , Dioxigenases/química , Níquel , Domínio Catalítico
8.
J Environ Manage ; 328: 116991, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36508976

RESUMO

Excessive nutrient loads reduce ecosystem resilience, resulting in fundamental changes in ecosystem structure and function when exceeding a certain threshold. However, quantitative analysis of the processes by which nutrient loading affects ecosystem resilience requires further exploration. Food web stability is at the heart of ecosystem resilience. In this study, we simulated the dynamics of the food web under different phosphorus loads for Lake Baiyangdian using the PCLake model and calculated the food web stability. Our results showed that there was a good correspondence between the food web stability and ecosystem state response to phosphorus loads. This relationship confirmed that food web stability could be regarded as a signal for the state transition in a real lake ecosystem. Moreover, our estimates suggested that food web stability was influenced only by several functional groups and their interaction strength. Diatoms and zooplankton were the key functional groups that affected food web stability. Phosphorus loads alter the distribution of functional group biomass, which in turn affects energy delivery and, ultimately, the stability of the food web. Corresponding to functional groups, the interactions among zooplankton, diatoms and detritus had the greatest impact, and the interaction strength of the three was positively correlated with food web stability. Overall, our study explained that food-web stability was critical to characterize ecosystem resilience response to external disturbances and can be turned into a scientific tool for lake ecosystem management.


Assuntos
Diatomáceas , Cadeia Alimentar , Animais , Ecossistema , Lagos , Fósforo , Biomassa , Zooplâncton , Fitoplâncton
9.
Chem Commun (Camb) ; 58(82): 11571-11574, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36165975

RESUMO

Microscale covalent organic polymers with a unique 3D hollow wool ball-like morphology have been woven from 1D nanorods by a cascade emulsion strategy with a large surface area (284 m2 g-1), which showed great potential for simultaneous removal (Qmax, 358.15 mg g-1) and fluorescent detection (detection limit, 8.0 µg L-1) of bisphenol A.


Assuntos
Nanotubos , Polímeros , Adsorção , Animais , Emulsões ,
10.
J Sep Sci ; 45(18): 3393-3403, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35819998

RESUMO

Prunella vulgaris L. is a well-known traditional Chinese medicine for blood glucose homeostasis and antioxidant potential. Ethyl acetate fraction of P. vulgaris L. demonstrated higher phenolic content (85.53 ± 6.74 mg gallic acid equivalents per gram dry weight), α-glucosidase inhibitory (IC50 , 69.13 ± 2.86 µg/ml), and antioxidant (IC50 , 8.68 ± 1.01 µg/ml) activities. However, the bioactive polyphenols responsible for the beneficial properties remain unclear. Here, bioreaction-HPLC-quadrupole-time-of-flight-MS/MS method was developed for rapid, accurate, and efficient screening and identification of polyphenols with α-glucosidase inhibitory and antioxidant activities from P. vulgaris L. Bioactive polyphenols can specifically bind with α-glucosidase or react with 1,1-diphenyl-2-picryl-hydrazyl radical, which was easily discriminated from nonactive compounds. Subsequently, 20 bioactive polyphenols (16 phenyl propionic acid derivatives and four flavonoids) were screened and identified. Furthermore, molecular docking analysis revealed that screened 20 polyphenols bind with the active sites of α-glucosidase through hydrogen bonding and π-π stacking. Density functional theory calculations demonstrated their electron transport ability and chemical reactivity. The in silico analysis confirmed the screened results. In summary, this study provided a valuable strategy for rapid discovering bioactive compounds from complex natural products and offered scientific evidence for further development and application of P. vulgaris L.


Assuntos
Prunella , alfa-Glucosidases , Antioxidantes/química , Glicemia , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Ácido Gálico/análise , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Polifenóis/análise , Polifenóis/farmacologia , Propionatos , Prunella/metabolismo , Espectrometria de Massas em Tandem , alfa-Glucosidases/metabolismo
11.
Phytochem Anal ; 33(6): 895-905, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35668040

RESUMO

INTRODUCTION: Citri Reticulatae Pericarpium Viride (CRPV, Qing Pi in Chinese) has been widely used in traditional Chinese medicine. Polymethoxylated flavonoids (PMFs), which are a special group of flavonoids with strong antitumor activity, are broadly distributed in citrus peels. However, systematic investigation of antitumor PMFs in CRPV has received little attention to date. OBJECTIVES: An MCF-7 cell biospecific extraction method integrated with neutral loss/diagnostic ion filtering-based HPLC-QTOF-MS/MS strategy was developed for rapid and specific profiling of antitumor PMFs and systematic identification of PMFs in CRPV. METHODOLOGY: By incubating MCF-7 cells with CRPV extract, potential antitumor PMFs specifically bound to cells and were isolated. Then, by systematic investigation of fragmentation pathways, neutral loss and diagnostic ion filtering strategies were proposed to comprehensively and accurately identify PMFs. RESULTS: Sixteen antitumor PMFs were unambiguously or tentatively identified. Among them, minor compound 15 (5-hydroxy-6,7,8,3',4'-pentamethoxyflavone with a free hydroxyl group at C-5) exhibited excellent antitumor activity, with an IC50 value of 2.81 ± 0.76 µg/mL, which is lower than that of 5-fluorouracil (IC50 , 4.92 ± 0.83 µg/mL). Nobiletin (12) and tangeretin (16), two major PMFs, presented moderate antitumor activities with IC50 values of 13.06 ± 1.85 and 17.07 ± 1.18 µg/mL, respectively, and their contents were sensitively and precisely determined. CONCLUSIONS: To the best of our knowledge, this is the first report on the systematic investigation of antitumor PMFs in CRPV. The study will lay a foundation for the quality control and clinical application of CRPV.


Assuntos
Produtos Biológicos , Citrus , Produtos Biológicos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Citrus/química , Flavonoides/análise , Espectrometria de Massas em Tandem/métodos
12.
Talanta ; 246: 123517, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35523022

RESUMO

Fabrication of facile, sensitive, and accurate pesticide detection strategies plays crucial roles in food safety, environmental protection, and human health. Here, a novel esterase activatable aggregation-induced emission (AIE) plus excited-state intramolecular proton transfer (ESIPT) probe, kaempferol tetraacetate, was designed and synthesized from purified natural kaempferol for ratiometric sensing of carbaryl. Acetate groups are introduced as the esterase reactive sites and AIE plus ESIPT initiator. Kaempferol tetraacetate is an aggregation-caused quenching compound that shows fluorescent (FL) emission at 415 nm. Esterase specifically hydrolyzes kaempferol tetraacetate to kaempferol with AIE plus ESIPT characteristics (distinct FL emission, 530 nm; a large Stokes shift, 165 nm within a short time (8 min). Molecular docking and kinetics performance indicate the high affinity and specific hydrolysis of esterase and kaempferol tetraacetate. Carbaryl inhibits the activity of esterase to efficiently suppress the production of kaempferol. Thus, a facile ratiometric assay strategy is constructed for carbaryl detection. By measuring the FL intensity ratio, the proposed strategy presents high selectivity and reliability with a wide linear range from 0.02 to 2.00 µg L-1 and a very low limit of detection at 0.007 µg L-1. Furthermore, appropriate recovery from 93.75% to 108.67% with a relative standard deviation less than 5.66% for real sample analysis indicates good accuracy and precision. All results indicate that the fabricated strategy offers a new way for facile, sensitive, and accurate detection of carbaryl in real complex samples.


Assuntos
Carbaril , Prótons , Esterases , Corantes Fluorescentes/química , Humanos , Quempferóis , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Espectrometria de Fluorescência
13.
Biosens Bioelectron ; 196: 113691, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637993

RESUMO

On-site multiplex enzyme detection is crucial for diagnosis, therapeutics and prognostic. To date, it is still a daunting challenge to develop portable, low-cost, and efficient multi-enzyme detection methods. Herein, a novel sample-in-result-out platform integrating ratiometric fluorescent assays with 3D origami microfluidic paper-based device (µPAD) was developed for simultaneous visual point-of-care testing (POCT) of alkaline phosphatase (ALP) and butyrylcholinesterase (BChE). Cascade catalytic reaction with the same two fluorescent signal indicators was rationally designed to ratiometric fluorescent detection of ALP and BChE: substrate of ALP (pyrophosphate) and product of BChE (thiocholine) can strongly complex with Cu2+, Cu2+ oxidizes o-phenylenediamine to fluorescent 2,3-diaminophenazine (oxOPD) (emission, 565 nm), oxOPD quenches the fluorescence of carbon dots (CDs, emission at 445 nm) via inner filter effect, thus oxOPD/CDs values are relevant to ALP and BChE activities. Then 3D origami µPAD composing of four layers and two parallel channels was fabricated and simply prepared by one-step plotting with black oil-based marker and specific metal molds. After simple folding and unfolding neighboring layers to sequentially initiate reactions of pre-loaded reagents, fluorescent images on the detection zone can be captured by smartphone and analyzed by red-green-blue software for quantitative analysis. Under optimal conditions, the proposed platform was successfully performed to detect ALP and BChE with activity difference at 3 orders of magnitude in human serum samples without any pretreatment procedures. Excellent selectivity, good precision, favorable linear range, and high accuracy were exhibited. Importantly, the platform opens a promising horizon for high-throughput POCT of multiplex biomarkers.


Assuntos
Fosfatase Alcalina , Técnicas Biossensoriais , Butirilcolinesterase , Corantes Fluorescentes , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito
14.
J Sep Sci ; 45(4): 938-944, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34932273

RESUMO

Traditional bioassay-guided investigation of bioactive compounds from natural products comprises critical steps, such as extraction, repeated column separation, and activity assay. Thus, the development of facile, rapid, and efficient technology is critically important. Here, a HepG2 cell-based extraction method was first developed to rapidly screen potential antitumor compounds from the seeds ofCassia obtusifolia. Then, an online extraction and enrichment-high-speed counter-current chromatography (HSCCC) strategy was fabricated to facilely and efficiently isolate target antitumor compounds, which included direct extraction from solid C. obtusifolia, removal of polar interferences, enrichment of target compounds, and preparative isolation by HSCCC using flow rate stepwise increasing mode. After further purification by Sephadex LH-20 column, five antitumor anthraquinones, aurantio-obtusin, 1-desmethylaurantio-obtusin, chryso-obtusin, obtusin, and questin, were obtained for structural characterization and bioassay verification. The results may not only provide new perspectives for facile and rapid investigation of bioactive compounds from complex natural products, but also offer a scientific basis for the potential applications of C. obtusifolia.


Assuntos
Cassia , Antraquinonas/química , Cassia/química , Distribuição Contracorrente , Extratos Vegetais/química , Sementes/química
15.
Water Res ; 202: 117442, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304073

RESUMO

Seasonal flooding-drought transformation process of lake sediments lead to changes of dissolved oxygen and redox conditions and the resultant generation of hydroxyl radical (HO•). To date, information on HO• formation and its regulators in seasonal lake sediments is largely unexplored. In this study, a total of nineteen sediments were collected from Lake Poyang, China, with the formation and mechanisms of HO• during the oxygenation process exploring via the incubation experiments, Fe K-edge X-ray adsorption spectroscopy, ultrafiltration, and fluorescent spectroscopy. Results showed that the concentrations of HO• generated ranged from 3.75 ± 1.13 to 271.8 ± 22.81 µmol kg-1, demonstrating high formation potential and obvious spatial heterogeneity. The yield of HO• formed was positively correlated with the contents of Fe(II), sedimentary organic carbon, and dissolved organic carbon, showing a general contribution of these reduced substances to HO• formation. Furthermore, application of Fe K-edge X-ray adsorption spectroscopy revealed the key species of sedimentary Fe-smectite for HO• formation due to its high peroxidase-like activity. Besides inorganic Fe(II), the sedimentary dissolved organic matters (DOMs) represented an important regulator for HO• formation, which contributed about 2-11% of the total HO• generation. Moreover, the DOM-induced formation potential was found to be highly related to the molecular weight distribution that the low molecular weight- (LMW, <1 kDa) fraction exhibited higher HO• formation potential than the bulk and high molecular weight- (HMW, 1 kDa-0.45 µm) counterparts. In addition, the omnipresent mineral Fe(II)-DOM interaction in sediment matrix exhibited another 2-6% of contribution to the total HO• production. This study highlighted the importance of contents and species of Fe(II) and DOM in manipulating the HO• yield, providing new insight into understanding the formation mechanisms of HO• in the seasonal lake sediment.


Assuntos
Radical Hidroxila , Lagos , Carbono/análise , China , Sedimentos Geológicos , Peso Molecular
16.
Sci Total Environ ; 787: 147528, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991915

RESUMO

Limited information is available on the spatiotemporal occurrence and ecological risks of organophosphate esters (OPEs) in coastal environments. 175 water samples were collected in Laizhou Bay (LZB) and its rivers and estuaries during spring and summer for the determination of 12 targeted OPEs. Total concentration of OPEs ranged from 234.4 to 2892.1 ng L-1 in the river and estuarine water and 87.6 to 969.4 ng L-1 in the bay water, with medians of 1015.8 and 296.8 ng L-1, respectively, showing that riverine inputs were the major sources of OPEs in the bay. Tris (2-chloroisopropyl) phosphate (TCIPP) and triethyl phosphate (TEP) were the most abundant OPEs, with median contributions of 47% and 36% in the bay water, respectively. The total concentration of OPEs was higher in the estuarine area of the Yellow River and the southwestern coast of the LZB under the influence of riverine OPE inputs and ocean currents. In addition, the concentrations of dominant OPE species were significantly higher in the surface water than in the bottom water. The concentrations of dominant OPE species were found to be significantly lower in summer than in spring, mainly due to both precipitation and seawater dilution effects. However, the concentrations of three minor OPE species were significantly higher in summer than in spring, probably because of their high usage in summer. TCIPP and TEP concentrations were significantly negatively correlated with salinity. The targeted OPEs posed low ecological risk in the bay and moderate ecological risk in the rivers and estuaries, which was mostly ascribed to the toxicity of tris (2-chloroethyl) phosphate (TCEP) and resorcinol-bis (diphenyl) phosphate (RDP) to algae. Priority should be given to TCIPP, TEP, TCEP, and RDP in the LZB due to their high concentrations and/or toxicity.

17.
J Sep Sci ; 44(13): 2612-2619, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33884739

RESUMO

Efficient and targeted screening and isolation of bioactive compounds from complex natural products is still a challenging work. Herein, diagnostic ion filtering based high-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry was firstly developed to screen six main iridoid glycosides from Hedyotis diffusa. Then, online extraction-high-speed counter current chromatography was proposed for targeted enrichment and preparative isolation using ethyl acetate/n-butanol/water (4.5:0.5:5, v/v/v) as solvent system. After that, Sephadex LH-20 column chromatography using methanol as solvent system was selected for further purification of six iridoid glycosides with purities over 98%. They were finally identified as monotropein, desacetylasperuloside acid, asperuloside, 6-O-(Z)-p-coumaroyl scandoside methyl ester, 6-O-(Z)-feruloyl scandoside methyl ester, and 6-O-(E)-p-coumaroyl scandoside methyl ester. And their anti-inflammatory activities were evaluated and confirmed by lipopolysaccharide activated RAW 264.7 macrophages. Obviously, the results provide a scientific basis for the potential applications of H. diffusa, and the developed methodology is efficient and reliable for targeted screening and isolation of bioactive compounds from natural products.


Assuntos
Medicamentos de Ervas Chinesas/química , Hedyotis/química , Glicosídeos Iridoides , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Glicosídeos Iridoides/química , Glicosídeos Iridoides/isolamento & purificação , Extratos Vegetais/química
18.
Environ Pollut ; 266(Pt 1): 115401, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32829172

RESUMO

Contamination by polycyclic aromatic hydrocarbons (PAHs) has been observed at high elevation environments; however, the occurrence and spatial variation of PAHs in alpine lakes of China is not well understood. We measured 15 priority PAHs in the sediments of Lake Qinghai in the Qinghai-Tibet Plateau, and assessed their distribution, source, and ecological risks. The total PAH concentration ranged from 30.4 to 125.2 ng g-1. Low molecular weight PAHs were dominant in the sediments, suggesting a local source for the emissions. Sediment sites closer to local settlements and rivers had higher concentration of PAHs. The concentration of PAHs was significantly correlated with pH, probably as a result of the high salinity of the lake, while it was not significantly correlated with organic matter content. Molecular diagnostic ratio analysis indicated that PAHs were derived mainly from coal and biomass combustion. Specifically, the positive matrix factorization model showed that petrogenic sources, vehicular emissions, biomass combustion, and coal combustion contributed for 11.6, 16.3, 23.6, and 48.5% of the PAHs, respectively. The risk quotient method was used to assess ecological risk of PAHs individually. The results indicate that indeno[1,2,3-cd]pyrene, benzo[b]fluoranthene, benzo[a]pyrene, phenanthrene, and anthracene would produce moderate ecological risks in 5, 20, 65, 100, and 100% of the sediment sites, respectively, while the other 10 PAH homologues would scarcely produce any serious ecological risk. We used the hierarchical Archimedean copula integral assessment model to evaluate the integral risk of PAHs. The result showed that 10, 40, and 50% of the sediment sites belong to mid-high, low, and mid-low risk levels, respectively. The current concentration and risk levels of PAHs in this study might be used as a baseline to assess the influence of future anthropogenic activities.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Medição de Risco , Tibet
19.
Water Res ; 184: 116187, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707308

RESUMO

The occurrence, temporal variation, and spatial variation of antibiotics in coastal bays and estuaries worldwide are not well documented or understood. Fifteen target antibiotics within the five classes of ß-lactams, amphenicols, macrolides, fluoroquinolones, and sulfonamides were measured during the summer and winter in the water of Jiaozhou Bay in China, which is a semi-enclosed urbanized bay. Fourteen antibiotics (excluding tylosin) were detected, thus demonstrating the widespread occurrence of their residues in the bay. The total antibiotic concentration ranged from 71.8 ng L-1 to 840 ng L-1 for the estuarine water, which was significantly higher than that for the bay water (38.7-181 ng L-1). The antibiotic classes in the bay water were dominated by fluoroquinolones and ß-lactams, which accounted for nearly 90% of the total antibiotic concentration. In addition, amoxicillin contamination was the most prominent among the 14 detected antibiotics as it accounted for ~44% of the total antibiotic concentration. The concentrations of amoxicillin, leucomycin, enrofloxacin, and sulfamonomethoxine in the bay water were usually higher than those reported for coastal bays and estuaries worldwide. The average total antibiotic concentration in the bay water was 84.7 ng L-1 during the summer, which was significantly lower than that during the winter (129.0 ng L-1). This was mainly due to high dilution by runoff during the summer. The florfenicol concentration in the bay water was significantly higher during the summer than in winter due to its higher usage in aquaculture during the summer. Spatially, the total antibiotic concentration (both summer and winter) was higher in the water along the eastern coast of the bay, where the population and hospital densities are high. However, the sum of the veterinary antibiotic concentrations was higher in the northeastern aquaculture area of the bay during the summer. A risk assessment revealed that amoxicillin and enrofloxacin could pose high risks (risk quotient of > 1) to algae in the bay. The synergic effects of pharmaceutical mixtures and the bioaccumulation of antibiotics through the food web should be considered in future studies.


Assuntos
Baías , Poluentes Químicos da Água , Antibacterianos/análise , China , Monitoramento Ambiental , Água , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 717: 137224, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062240

RESUMO

Coastal contamination by polycyclic aromatic hydrocarbons (PAHs) is a worldwide issue. Nevertheless, the spatiotemporal distribution of PAHs in the urbanized semi-enclosed bays in China remains relatively uncharacterized. Here we present measurements of 15 priority PAHs in the water and sediment of the Jiaozhou Bay, as well the assessment of their spatiotemporal distribution, sources and ecological risk. The total PAH (ΣPAH) concentrations ranged from 23.6 to 86.2 ng L -1 in the water and from 37.7 to 290.9 ng g-1 in the sediment. The average ΣPAH concentration in the water was significantly higher in the winter (52.8 ng L -1) than in the spring (30.4 ng L -1) (α = 0.05 level). Average concentration of phenanthrene in the water was 8.9 ng L-1 in the spring and 15.7 ng L-1 in the winter and the highest of PAHs, contributing about 29.4% to ΣPAHs. Compared with three-ring PAHs, four- and five-ring PAHs were more tended to accumulate in the sediment, and the partitioning into sediment was influenced by the water salinity. The spatial distribution of ΣPAH concentrations in the water were controlled by water exchange capability. Organic matter content and sediment texture played important roles in determining the spatial distribution of ΣPAHs in the sediment. Molecular diagnostic ratio analysis indicated that pyrogenic source was the main source for PAHs in the Bay. Specifically, the positive matrix factorization (PMF) model indicated that vehicle emission, biomass combustion, coal combustion, and petrogenic sources contributed for 41.6, 20.2, 20, and 18.2% of ΣPAHs, respectively. The risk assessment by sediment quality guidelines suggested that adverse biological effects are expected to occur rarely in the sediment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...