Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biodegradation ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733426

RESUMO

Health and environmental protection are the development trend of household appliances, coupled with the impact of the COVID-19 epidemic in the past few years. Consumers have unprecedented concerns and expectations about the sterilization and disinfection functions of household appliances. As a washing and nursing equipment for household clothes, the anti-bacterial technology of washing machine has developed rapidly. The new models of washing machines in the market have basically added the function of sterilization. In order to thoroughly solve the problem of sterilization and bacteriostasis of washing machines from the source, the distribution of microbial contamination in washing machines should be fully investigated. At present, there is almost no systematic study on the microbial community structure in washing machines in China. Therefore, the purpose of this study is to analyze the bacterial community structure in Chinese household washing machines. To explore the key factors affecting the bacterial community structure of washing machines. Bacterial communities were comprehensively analyzed by high throughput sequencing. Using chao and shannon indexes as indicators, one-way ANOVA was used to explore the key factors affecting the bacterial community structure of washing machines. A total of 2,882,778 tags and 21,265 OTUs from 522 genera were sequenced from 56 washing machine samples. Genus Mycobacterium, Pseudomonas, Brevundimonas, Sphingomonas, Sphingobium, Enhydrobacter, Methylobacterium, Pseudoxanthomonas, Stenotrophomonas and Sphingopyxis were the top ten bacteria genera in abundance. The effects of sources, types, frequency of utilization, sampling locations and service life of washing machines on bacterial diversity in washing machine were systematically analyzed. The statistical analysis showed that service life was an important factor affecting bacterial diversity in washing machine. Our study lays a foundation for directional screening of characteristic microorganisms with targeted characters including malodor-producing, fouling, pathogenic and stress-resistance, the antibacterial evaluation, metabolic mechanism of key characteristic microorganisms as well as antibacterial materials development. At present, the sterilization technology of washing machines has not been fully in combination with the distribution survey of microorganisms in washing machines. According to the specific microorganism distribution condition of the washing machine, the key distribution positions and the types of specific microorganisms contained in different positions, conduct more targeted sterilization treatment. This will help to completely solve the problem of microbial growth in washing machines from the source.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36901399

RESUMO

The emission of harmful gases has seriously exceeded relative standards with the rapid development of modern industry, which has shown various negative impacts on human health and the natural environment. Recently, metal-organic frameworks (MOFs)-based materials have been widely used as chemiresistive gas sensing materials for the sensitive detection and monitoring of harmful gases such as NOx, H2S, and many volatile organic compounds (VOCs). In particular, the derivatives of MOFs, which are usually semiconducting metal oxides and oxide-carbon composites, hold great potential to prompt the surface reactions with analytes and thus output amplified resistance changing signals of the chemiresistors, due to their high specific surface areas, versatile structural tunability, diversified surface architectures, as well as their superior selectivity. In this review, we introduce the recent progress in applying sophisticated MOFs-derived materials for chemiresistive gas sensors, with specific emphasis placed on the synthesis and structural regulation of the MOF derivatives, and the promoted surface reaction mechanisms between MOF derivatives and gas analytes. Furthermore, the practical application of MOF derivatives for chemiresistive sensing of NO2, H2S, and typical VOCs (e.g., acetone and ethanol) has been discussed in detail.


Assuntos
Estruturas Metalorgânicas , Compostos Orgânicos Voláteis , Humanos , Acetona , Meio Ambiente , Etanol , Gases , Óxidos
3.
Nanomaterials (Basel) ; 12(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335718

RESUMO

A porous ball-flower-like Co3O4/Fe2O3 heterostructural photocatalyst was synthesized via a facile metal-organic-framework-templated method, and showed an excellent degradation performance in the model molecule rhodamine B under visible light irradiation. This enhanced photocatalytic activity can be attributed to abundant photo-generated holes and hydroxyl radicals, and the combined effects involving a porous structure, strong visible-light absorption, and improved interfacial charge separation. It is notable that the ecotoxicity of the treated reaction solution was also evaluated, confirming that an as-synthesized Co3O4/Fe2O3 catalyst could afford the sunlight-driven long-term recyclable degradation of dye-contaminated wastewater into non-toxic and colorless wastewater.

4.
Langmuir ; 36(45): 13396-13407, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141589

RESUMO

The concept of slippery lubricant-infused surfaces has shown promising potential in antifouling for controlling detrimental biofilm growth. In this study, nontoxic silicone oil was either impregnated into porous surface nanostructures, referred to as liquid-infused surfaces (LIS), or diffused into a polydimethylsiloxane (PDMS) matrix, referred to as a swollen PDMS (S-PDMS), making two kinds of slippery surfaces. The slippery lubricant layers have extremely low contact angle hysteresis, and both slippery surfaces showed superior antiwetting performances with droplets bouncing off or rolling transiently after impacting the surfaces. We further demonstrated that water droplets can remove dust from the slippery surfaces, thus showing a "cleaning effect". Moreover, "coffee-ring" effects were inhibited on these slippery surfaces after droplet evaporation, and deposits could be easily removed. The clinically biofilm-forming species P. aeruginosa (as a model system) was used to further evaluate the antifouling potential of the slippery surfaces. The dried biofilm stains could still be easily removed from the slippery surfaces. Additionally, both slippery surfaces prevented around 90% of bacterial biofilm growth after 6 days compared to the unmodified control PDMS surfaces. This investigation also extended across another clinical pathogen, S. epidermidis, and showed similar results. The antiwetting and antifouling analysis in this study will facilitate the development of more efficient slippery platforms for controlling biofouling.

5.
Soft Matter ; 16(32): 7613-7623, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32728681

RESUMO

Surface topography designed to achieve spatial segregation has shown promise in delaying bacterial attachment and biofilm growth. However, the underlying mechanisms linking surface topography to the inhibition of microbial attachment and growth still remain unclear. Here, we investigated bacterial attachment, cell alignment and biofilm formation of Pseudomonas aeruginosa on periodic nano-pillar surfaces with different pillar spacing. Using fluorescence and scanning electron microscopy, bacteria were shown to align between the nanopillars. Threadlike structures ("bacterial nanotubes") protruded from the majority of bacterial cells and appeared to link cells directly with the nanopillars. Using ΔfliM and ΔpilA mutants lacking flagella or pili, respectively, we further demonstrated that cell alignment behavior within nano-pillars is independent of the flagella or pili. The presence of bacteria nanotubes was found in all cases, and is not linked to the expression of flagella or pili. We propose that bacterial nanotubes are produced to aid in cell-surface or cell-cell connections. Nano-pillars with smaller spacing appeared to enhance the extension and elongation of bacterial nanotube networks. Therefore, nano-pillars with narrow spacing can be easily overcome by nanotubes that connect isolated bacterial aggregates. Such nanotube networks may aid cell-cell communication, thereby promoting biofilm development.


Assuntos
Fímbrias Bacterianas , Nanotubos , Aderência Bacteriana , Biofilmes , Flagelos , Pseudomonas aeruginosa
6.
Langmuir ; 35(45): 14670-14680, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31630525

RESUMO

A variety of natural surfaces exhibit antibacterial properties; as a result, significant efforts in the past decade have been dedicated toward fabrication of biomimetic surfaces that can help control biofilm growth. Examples of such surfaces include rose petals, which possess hierarchical structures like the micropapillae measuring tens of microns and nanofolds that range in the size of 700 ± 100 nm. We duplicated the natural structures on rose petal surfaces via a simple UV-curable nanocasting technique and tested the efficacy of these artificial surfaces in preventing biofilm growth using clinically relevant bacteria strains. The rose petal-structured surfaces exhibited hydrophobicity (contact angle (CA) ≈ 130.8° ± 4.3°) and high CA hysteresis (∼91.0° ± 4.9°). Water droplets on rose petal replicas evaporated following the constant contact line mode, indicating the likely coexistence of both Cassie and Wenzel states (Cassie-Baxter impregnating the wetting state). Fluorescence microscopy and image analysis revealed the significantly lower attachment of Staphylococcus epidermidis (86.1 ± 6.2% less) and Pseudomonas aeruginosa (85.9 ± 3.2% less) on the rose petal-structured surfaces, compared with flat surfaces over a period of 2 h. An extensive biofilm matrix was observed in biofilms formed by both species on flat surfaces after prolonged growth (several days), but was less apparent on rose petal-biomimetic surfaces. In addition, the biomass of S. epidermidis (63.2 ± 9.4% less) and P. aeruginosa (76.0 ± 10.0% less) biofilms were significantly reduced on the rose petal-structured surfaces, in comparison to the flat surfaces. By comparing P. aeruginosa growth on representative unitary nanopillars, we demonstrated that hierarchical structures are more effective in delaying biofilm growth. The mechanisms are two-fold: (1) the nanofolds across the hemispherical micropapillae restrict initial attachment of bacterial cells and delay the direct contact of cells via cell alignment and (2) the hemispherical micropapillae arrays isolate bacterial clusters and inhibit the formation of a fibrous network. The hierarchical features on rose petal surfaces may be useful for developing strategies to control biofilm formation in medical and industrial contexts.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Rosa/química , Staphylococcus epidermidis/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus epidermidis/citologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Propriedades de Superfície
7.
Sci Rep ; 8(1): 1071, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348582

RESUMO

Titanium-based implants are ubiquitous in the healthcare industries and often suffer from bacterial attachment which results in infections. An innovative method of reducing bacterial growth is to employ nanostructures on implant materials that cause contact-dependent cell death by mechanical rupture of bacterial cell membranes. To achieve this, we synthesized nanostructures with different architectures on titanium surfaces using hydrothermal treatment processes and then examined the growth of Staphylococcus epidermidis on these surfaces. The structure obtained after a two-hour hydrothermal treatment (referred to as spear-type) showed the least bacterial attachment at short times but over a period of 6 days tended to support the formation of thick biofilms. By contrast, the structure obtained after a three-hour hydrothermal treatment (referred to as pocket-type) was found to delay biofilm formation up to 6 days and killed 47% of the initially attached bacteria by penetrating or compressing the bacteria in between the network of intertwined nano-spears. The results point to the efficacy of pocket-type nanostructure in increasing the killing rate of individual bacteria and potentially delaying longer-term biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Nanoestruturas/química , Nanoestruturas/microbiologia , Staphylococcus epidermidis/fisiologia , Titânio/química , Antibacterianos/química , Aderência Bacteriana , Membrana Celular/ultraestrutura , Viabilidade Microbiana , Nanoestruturas/ultraestrutura , Propriedades de Superfície
8.
Nanotechnology ; 27(19): 195703, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27041486

RESUMO

A lot of experimental, numerical simulation and analytical modelling work has been done on how the substrate affects the measured hardness and elastic modulus of the coating/substrate system for nanoindentation tests. Little work has been done on the elastic-plastic behaviour of micro particle-matrix systems. Clifford et al have proposed an empirical model to describe the spatially dependent composite modulus during nanoindentation tests for linear elastic particles embedded in a linear elastic matrix. However, no such models have been developed for elastic-plastic composites. In this study, finite element simulations were used to determine the elastic modulus and hardness of hard particles embedded in a soft matrix and vice versa. An extended Clifford model has been developed to determine the elastic modulus and hardness for elastic-plastic composites with various particle shapes and volume fractions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...