Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(11): e202317355, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38165698

RESUMO

As the fourth full-nitrogen structure, the pentazolate anion (cyclo-N5 - ) was highly coveted for decades. In 2017, the first air-stable non-metal pentazolate salt, (N5 )6 (H3 O)3 (NH4 )4 Cl, was obtained, representing a milestone in this field. As the latest member of the azole family, cyclo-N5 - is comprised of five nitrogen atoms. Although significant attention has been paid to the potential of cyclo-N5 - as an energetic material, its poor thermostability hinders any practical application. However, the unique ring structure and multiple coordination capability of cyclo-N5 - provide a platform for the fabrication of various structures, among which pentasil-zeolite topologies are the most intriguing. In addition, the introduction of structure-directing auxiliaries enables the self-assembly of diverse topological architectures, potentially imparting cyclo-N5 - with the potential to impact wide-ranging areas of coordination chemistry and topology. In this minireview, different pentasil-zeolite topologies based on metal-pentazolate frameworks are evaluated. To date, three zeolitic and zeolite-like topologies have been reported, namely the melanophlogite (MEP), chibaite (MTN), and unj topologies. The MEP topology consists of two nanocages, Na20 N60 and Na24 N60 , whereas the MTN topology contains Na20 N60 and Na28 N80 nanocages. Furthermore, the unj topology features multiple homochiral channels consisting of two helical chains. Various possible strategies for obtaining additional pentasil-zeolite topologies are also discussed.

2.
Inorg Chem ; 62(42): 17199-17206, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37823764

RESUMO

Energetic materials have been widely applied in civil and military fields, whose thermostability is a key indicator to evaluate their safety levels under severe conditions. Herein, two novel energetic metal-organic frameworks (EMOFs), namely, 4 and 6, were experimentally obtained and comprehensively characterized. The two EMOFs both possess unique three-dimensional (3D) coordination structures. With a high crystal density of 2.184 g·cm-3, EMOF 4 exhibits outstandingly superior thermostability (onset: 290 °C; peak: 303 °C), while EMOF 6 features onset and peak decomposition temperatures of 220 and 230 °C. The calculated energetic parameters of 4 and 6 are as follows: detonation velocity: 8731 m·s-1 and 8294 m·s-1; detonation pressure: 26.5 and 26.4 GPa. Compared to EMOF 6, EMOF 4 features high energy, excellent thermostability, and low mechanical sensitivities, which should be partly attributed to more plentiful coordination interactions. More coordination bonds are conducive to strengthening the EMOF framework, which needs much more energy to collapse, thereby maintaining higher thermal stability. The above favorable characteristics not only indicate EMOF 4 has a promising future in applications as a thermostable explosive but also provide an effective and feasible strategy for developing novel heat-resistant energetic materials via reinforced frame structures of EMOFs.

3.
Inorg Chem ; 60(12): 8409-8413, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33871998

RESUMO

Two novel sodium-pentazolate frameworks (namely, MPF-3 and MPF-4) were achieved by adding simple additives. MPF-3 exhibits an aesthetic three-dimensional (3D) framework with the zeolitic MTN topology, featuring Na28N80 and Na20N60 nanocages. In MPF-4, two left-handed helical chains construct enclosed homochiral channels filled with dimethyl sulfone molecules, which constitute a zeolite-like UNJ topology. Importantly, the preparation of these two compounds provides an effective experimental means to explore the unique symmetrical structure and multiple coordination modes of pentazolium anion and demonstrates that it is possible to regulate the crystal structure through appropriate additives.

4.
Dalton Trans ; 49(48): 17542-17546, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33300924

RESUMO

A three-dimensional bowl-shaped molecular container based on pentazole was first synthesized. These containers are sealed and linked by the assembled "molecular plane". Each container has an ovoid cavity occupied by one DMSO guest molecule. The self-assembly of this molecular container will provide opportunities for the use of pentazole in supramolecular chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...