Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(2): e202315053, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37883532

RESUMO

A series of isostructural supramolecular cages with a rhombic dodecahedron shape have been assembled with distinct metal-coordination lability (M8 Pd6 -MOC-16, M=Ru2+ , Fe2+ , Ni2+ , Zn2+ ). The chirality transfer between metal centers generally imposes homochirality on individual cages to enable solvent-dependent spontaneous resolution of Δ8 /Λ8 -M8 Pd6 enantiomers; however, their distinguishable stereochemical dynamics manifests differential chiral phenomena governed by the cage stability following the order Ru8 Pd6 >Ni8 Pd6 >Fe8 Pd6 >Zn8 Pd6 . The highly labile Zn centers endow the Zn8 Pd6 cage with conformational flexibility and deformation, enabling intrigue chiral-Δ8 /Λ8 -Zn8 Pd6 to meso-Δ4 Λ4 -Zn8 Pd6 transition induced by anions. The cage stabilization effect differs from inert Ru2+ , metastable Fe2+ /Ni2+ , and labile Zn2+ , resulting in different chiral-guest induction. Strikingly, solvent-mediated host-guest interactions have been revealed for Δ8 /Λ8 -(Ru/Ni/Fe)8 Pd6 cages to discriminate the chiral recognition of the guests with opposite chirality. These results demonstrate a versatile procedure to control the stereochemistry of metal-organic cages based on the dynamic metal centers, thus providing guidance to maneuver cage chirality at a supramolecular level by virtue of the solvent, anion, and guest to benefit practical applications.

2.
Dalton Trans ; 53(1): 285-291, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38047478

RESUMO

Thermal imaging materials with high sensitivity and the ability to reflect real-time temperature play an important role in research areas such as biotechnology and electronic engineering. However, the temperature sensitivity and temporal resolution of the current materials are not suitable for the complicated detection situation. In this paper, we introduce a thermal imaging material - SrB4O7:5%Sm2+ - with high temperature sensitivity. Furthermore, by applying a time resolving technique based on an intensified charge-coupled device, the sensitivity and temporal resolution are greatly promoted. The good temperature sensitivity (9.67% K-1 at 533 K), the high spatial resolution (2.7 µm) and the fast detection time (<1 s) suggest its considerable potential for real-time thermal imaging applications. The results of temperature distribution on a printed circuit board show that the as-prepared material will be greatly beneficial for thermal imaging applications.

3.
J Am Chem Soc ; 145(42): 23361-23371, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844297

RESUMO

Molecular recognition lies at the heart of biological functions, which inspires lasting research in artificial host syntheses to mimic biomolecules that can recognize, process, and transport molecules with the highest level of complexity; nonetheless, the design principle and quantifying methodology of artificial hosts for multiple guests (≥4) remain a formidable task. Herein, we report two rhombic dodecahedral cages [(Zn/Fe)8Pd6-MOC-16], which embrace 12 adaptive pockets for multiguest binding with distinct conformational dynamics inherent in metal-center lability and are able to capture 4-24 guests to manifest a surprising complexity of binding scenarios. The exceptional high-order and hierarchical encapsulation phenomena suggest a wide host-guest dynamic-fit, enabling conformational adjustment and adaptation beyond the duality of induced-fit and conformational selection in protein interactions. A critical inspection of the host-guest binding events in solution has been performed by NMR and ESI-MS spectra, highlighting the importance of acquiring a reliable binding repertoire from different techniques and the uncertainty of quantifying the binding affinities of multiplying guests by an oversimplified method.


Assuntos
Biomimética , Conformação Molecular
4.
Dalton Trans ; 52(43): 15798-15806, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37812449

RESUMO

Color tunable phosphors of Mn4+ and Tb3+ co-doped double-perovskite SrGdLiTeO6 (SGLT) were synthesized in this work. The crystal parameters and photoluminescence performances were investigated in detail. By taking advantage of the different thermal quenching strengths between Mn4+ and Tb3+ ions, the emission color of SGLT:0.7%Mn4+/1%Tb3+ changed from red to green, which could be used for high-temperature temperature warning indication. Moreover, according to the luminescence intensity ratio (LIR) technique, wide temperature-range optical thermometry was developed and further, the maximum relative sensitivity (SR1) value of the SGLT:0.7%Mn4+/5%Tb3+ phosphor was determined to be 1.49% K-1 at 560 K. On the other hand, the sensing properties were also analyzed based on the temperature-dependent lifetime method. The most interesting thing is that the maximum SR2 value reached 1.88% K-1 at 573 K. This work proved that the Mn4+ and Tb3+ co-doped double-perovskite SrGdLiTeO6 could be potentially used in temperature warning indication and high sensitivity luminescence thermometry.

5.
Angew Chem Int Ed Engl ; 61(48): e202210012, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219474

RESUMO

Porous supramolecular assemblies constructed by noncovalent interactions are promising for adsorptive purification of methane because of their easy regeneration. However, the poor stability arising from the weak noncovalent interactions has obstructed their practical applications. Here, we report a robust and easily regenerated polyhedron-based cationic framework assembled from a metal-organic square. This material exhibits a very low affinity for CH4 and N2 , but captures other competing gases (e.g. C2 H6 , C3 H8 , and CO2 ) with a moderate affinity. These results underpin highly selective separation of a range of gas mixtures that are relevant to natural gas and industrial off-gas. Dynamic breakthrough studies demonstrate its practical separation for C2 H6 /CH4 , C3 H8 /CH4 , CO2 /N2 , and CO2 /CH4 . Particularly, the separation time is ≈11 min g-1 for the C2 H6 /CH4 (15/85 v/v) mixture and ≈49 min g-1 for the C3 H8 /CH4 (15/85 v/v) mixture (under a flow of 2.0 mL min-1 ), respectively, enabling its capability for CH4 purification from light alkanes.


Assuntos
Dióxido de Carbono , Metano , Adsorção , Porosidade , Metais , Gases
6.
J Card Surg ; 37(6): 1736-1739, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35362227

RESUMO

Here, we report a case of a dissected thoracoabdominal aortic aneurysm repair after frozen elephant trunk implantation, using aortic balloon occlusion technique to simplify the proximal anastomosis and avoid deep hypothermic circulatory arrest.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Oclusão com Balão , Implante de Prótese Vascular , Dissecção Aórtica/cirurgia , Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/cirurgia , Implante de Prótese Vascular/métodos , Humanos
7.
Dalton Trans ; 50(33): 11412-11421, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231594

RESUMO

Novel double perovskite SrLaLiTeO6 (abbreviated as SLLT):Mn4+,Dy3+ phosphors synthesized using a solid-state reaction strategy exhibit distinct dual-emission of Mn4+ and Dy3+. High-sensitivity and wide-temperature-range dual-mode optical thermometry was exploited taking advantage of the diverse thermal quenching between Mn4+ and Dy3+ and the decay lifetime of Mn4+. The thermometric properties in the range of 298-673 K were investigated by utilizing the fluorescence intensity ratio (FIR) of Dy3+ (4F9/2→6H13/2)/Mn4+ (2Eg→4A2g) and the Mn4+ (2Eg→4A2g) lifetime under 351 nm and 453 nm excitation, respectively. The maximum relative sensitivities (SR) of the resultant SLLT:1.2%Mn4+,7%Dy3+ phosphor under 351 nm and 453 nm excitation employing the FIR technology were determined to be 1.60% K-1 at 673 K and 1.44% K-1 at 673 K, respectively. Additionally, the maximum SR values based on the lifetime-mode were 1.59% K-1 at 673 K and 2.18% K-1 at 673 K, respectively. It is noteworthy that the SR values can be manipulated by different excitation wavelengths and multi-modal optical thermometry. These results suggest that the SLLT:Mn4+,Dy3+ phosphor has prospective potential in optical thermometry and provide conducive guidance for designing high-sensitivity multi-modal optical thermometers.

8.
Opt Express ; 28(22): 33747-33757, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33115034

RESUMO

A strategy of optical temperature sensing was developed by using various thermal quenching of Mn4+ and Eu3+ for double perovskite tellurite phosphor in optical thermometers. Herein, SrGdLiTeO6 (SGLT): Mn4+,Eu3+ phosphors were synthesized by a high-temperature solid-state reaction method. The temperature-dependent emission spectra indicated that two distinguishable emission peaks originated from Eu3+ and Mn4+ exhibited significantly diverse temperature responses. Therefore, optical thermometers with a dual-mode mechanism were designed by employing a fluorescence intensity ratio (FIR) of Mn4+ (2Eg→4A2g) and Eu3+ (5D0→7F1,2) and the decay lifetime of Mn4+ as the temperature readouts. The temperature sensing of the phosphors ranging from 300 to 550 K were studied. The maximum relative sensitivities (Sr) are obtained as 4.9% K-1 at 550 K. Meanwhile, the 695 nm emission of Mn4+ possessed a temperature-dependent decay lifetime with Sr of 0.229% K-1 at 573 K. Relevant results demonstrate the SrGdLiTeO6:Mn4+, Eu3+ phosphor as an optical thermometer candidate and also provide constructive suggestions and guidance for constructing high-sensitivity dual-mode optical thermometers.

9.
Opt Lett ; 43(4): 835-838, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444006

RESUMO

Monodisperse ß-NaYF4:1%Sm3+ nanoparticles were fabricated successfully via the thermal decomposition technique. Strong temperature dependence of the Sm3+ emission was observed when its thermally populated state H7/26 was directly excited to the G5/24 level. This strategy not only can eliminate laser heating and background Stokes-type scattering noise but also has a high quantum yield as a result of one-photon excitation process. Under 594.0 nm laser excitation, the emission intensity of G5/24-H5/26 enhances monotonously with rising temperature from 300 K to 430 K, including a physiological temperature range (27°C-60°C). The relative temperature sensitivity can reach 1.1% K-1 and 0.91% K-1 at 300 K and 330 K, respectively. In addition, the repeatability of temperature sensing was evaluated under several heating-cooling cycles, and the decay curves of the emission at 560.0 nm (G5/24-H5/26) at different temperatures were also investigated. These results raise the prospects of monodisperse ß-NaYF4:1%Sm3+ nanoparticles for optical temperature sensing in biomedicine fields.

10.
Sci Rep ; 7: 41311, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145482

RESUMO

Real-time temperature imaging with high spatial resolution has been a challenging task but also one with wide potential applications. To achieve this task, temperature sensor is critical. Fluorescent materials stand out to be promising candidates due to their quick response and strong temperature dependence. However, former reported temperature imaging techniques with fluorescent materials are mainly based on point by point scanning, which cannot fulfill the requirement of real-time monitoring. Based on fluorescent intensity ratio (FIR) of two emission bands of SrB4O7:Sm2+, whose spatial distributions were simultaneously recorded by two cameras with special filters separately, real-time temperature imaging with high spatial resolution has been realized with low cost. The temperature resolution can reach about 2 °C in the temperature range from 120 to 280 °C; the spatial resolution is about 2.4 µm and the imaging time is as fast as one second. Adopting this system, we observed the dynamic change of a micro-scale thermal distribution on a printed circuit board (PCB). Different applications and better performance could also be achieved on this system with appropriate fluorescent materials and high sensitive CCD detectors according to the experimental environment.

11.
ACS Appl Mater Interfaces ; 8(50): 34546-34551, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998110

RESUMO

Sm2+-doped SrB4O7 was synthesized for high-sensitivity thermometry. A high thermal-sensitive fluorescence intensity ratio and fluorescence lifetime were achieved in a wide temperature range. At 500 K, the relative sensitivity of the temperature sensing was 2.16% K-1 for the fluorescence intensity ratio and 3.36% K-1 for the fluorescence lifetime. Furthermore, the fluorescence color-shifted dramatically from deep red at room temperature to green at 700 K. On the basis of this color change, a visible temperature field was obtained on quartz glass covered with our sample, which made the thermal conduction and distribution visible to the human eye. The temperature of the temperature field was determined using two methods. These outstanding properties, combined with the high sensitivity, multimode for temperature sensing and thermal stability of the sample, make SrB4O7:Sm2+ a promising material for highly sensitive thermometry applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...