Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 283(5410): 2069-73, 1999 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-10092226

RESUMO

Broad-band (ultraviolet to near-infrared) observations of the intense gamma ray burst GRB 990123 started approximately 8.5 hours after the event and continued until 18 February 1999. When combined with other data, in particular from the Robotic Telescope and Transient Source Experiment (ROTSE) and the Hubble Space Telescope (HST), evidence emerges for a smoothly declining light curve, suggesting some color dependence that could be related to a cooling break passing the ultraviolet-optical band at about 1 day after the high-energy event. The steeper decline rate seen after 1.5 to 2 days may be evidence for a collimated jet pointing toward the observer.

2.
Science ; 283(5410): 2073-5, 1999 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-10092227

RESUMO

Polarization of the optical emission from GRB 990123 was measured on 24.17 January 1999 universal time with the Nordic Optical Telescope. An upper limit of 2.3% on the linear polarization was found. Accurate polarization measurements provide important clues to the blast wave geometry and magnetic field structure of gamma-ray bursts (GRBs). The lack of detectable polarization for GRB 990123 indicates that the optical afterglow was produced by a blast wave of unknown geometry with an insignificant coherent magnetic field or by a beamed outflow at high Lorentz factor seen at a small viewing angle. Such a collimated jet would help solve the problem of energy release in this exceptionally luminous cosmological burst.

3.
Science ; 283(5410): 2075-7, 1999 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-10092228

RESUMO

An optical spectrum of the afterglow from the unusually bright gamma-ray burst GRB 990123 obtained on 24.25 January 1999 universal time showed an absorption system at a redshift of z = 1.600. The absence of a hydrogen Lyman alpha forest sets an upper limit of z < 2.17, whereas ultraviolet photometry indicates an upper limit of z < 2.05. The probability of intersecting an absorption system as strong as the one observed along a random line of sight out to this z is at most a few percent, implying that GRB 990123 was probably at z = 1. 600. Currently favored cosmological parameters imply that an isotropic energy release equivalent to the rest mass of 1.8 neutron stars (4.5 x 10(54) erg) was emitted in gamma rays. Nonisotropic emission, such as intrinsic beaming, may resolve this energy problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...