Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 475: 116627, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453479

RESUMO

SMARCA2 and SMARCA4 are the ATPases of the SWI/SNF chromatin remodeling complex, which play a significant role in regulating transcriptional activity and DNA repair in cells. SMARCA2 has become an appealing synthetic-lethal, therapeutic target in oncology, as mutational loss of SMARCA4 in many cancers leads to a functional dependency on residual SMARCA2 activity. Thus, for therapeutic development, an important step is understanding any potential safety target-associated liabilities of SMARCA2 inhibition. To best mimic a SMARCA2 therapeutic, a tamoxifen-inducible (TAMi) conditional knockout (cKO) rat was developed using CRISPR technology to understand the safety profile of Smarca2 genetic ablation in a model system that avoids potential juvenile and developmental phenotypes. As the rat is the prototypical rodent species utilized in toxicology studies, a comprehensive toxicological and pathological assessment was conducted in both heterozygote and homozygous knockout rats at timepoints up to 28 days, alongside relevant corresponding controls. To our knowledge, this represents the first TAMi cKO rat model utilized for safety assessment evaluations. No significant target-associated phenotypes were observed when Smarca2 was ablated in mature (11- to 15-week-old) rats; however subsequent induction of SMARCA4 was evident that could indicate potential compensatory activity. Similar to mouse models, rat CreERT2-transgene and TAMi toxicities were characterized to avoid confounding study interpretation. In summary, a lack of significant safety findings in Smarca2 cKO rats highlights the potential for therapeutics targeting selective SMARCA2 ATPase activity; such therapies are predicted to be tolerated in patients without eliciting significant on-target toxicities.


Assuntos
Neoplasias , Tamoxifeno , Camundongos , Ratos , Animais , Tamoxifeno/toxicidade , Adenosina Trifosfatases , Mutação
3.
Methods Mol Biol ; 2631: 135-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995666

RESUMO

Generation of transgenic mice by direct microinjection of foreign DNA into fertilized ova has become a routine technique in biomedical research. It remains an essential tool for studying gene expression, developmental biology, genetic disease models, and their therapies. However, the random integration of foreign DNA into the host genome that is inherent to this technology can lead to confounding effects associated with insertional mutagenesis and transgene silencing. Locations of most transgenic lines remain unknown because the methods are often burdensome (Nicholls et al., G3: Genes Genomes Genetics 9:1481-1486, 2019) or have limitations (Goodwin et al., Genome Research 29:494-505, 2019). Here, we present a method that we call Adaptive Sampling Insertion Site Sequencing (ASIS-Seq) to locate transgene integration sites using targeted sequencing on Oxford Nanopore Technologies' (ONT) sequencers. ASIS-Seq requires only about 3 ug of genomic DNA, 3 hours of hands-on sample preparation time, and 3 days of sequencing time to locate transgenes in a host genome.


Assuntos
Nanoporos , Camundongos , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Genoma , Sequência de Bases , Transgenes , Camundongos Transgênicos , Análise de Sequência de DNA
4.
Methods Mol Biol ; 2631: 183-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995668

RESUMO

Gene targeting in mouse ES cells replaces or modifies genes of interest; conditional alleles, reporter knock-ins, and amino acid changes are common examples of how gene targeting is used. To streamline and increase the efficiency in our ES cell pipeline and decrease the timeline for mouse models produced via ES cells, automation is introduced in the pipeline. Below, we describe a novel and effective approach utilizing ddPCR, dPCR, automated DNA purification, MultiMACS, and adenovirus recombinase combined screening workflow that reduces the time between therapeutic target identification and experimental validation.


Assuntos
Células-Tronco Embrionárias , Marcação de Genes , Camundongos , Animais , Fluxo de Trabalho , Reação em Cadeia da Polimerase , Células-Tronco Embrionárias/metabolismo , Automação
5.
Mol Ther Methods Clin Dev ; 27: 431-449, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36419469

RESUMO

With the aim of expediting drug target discovery and validation for respiratory diseases, we developed an optimized method for in situ somatic gene disruption in murine lung epithelial cells via AAV6-mediated CRISPR-Cas9 delivery. Efficient gene editing was observed in lung type II alveolar epithelial cells and distal airway cells following assessment of single- or dual-guide AAV vector formats, Cas9 variants, and a sequential dosing strategy with combinatorial guide RNA expression cassettes. In particular, we were able to demonstrate population-wide gene disruption within distinct epithelial cell types for separate targets in Cas9 transgenic animals, with minimal to no associated inflammation. We also observed and characterized AAV vector integration events that occurred within directed double-stranded DNA break sites in lung cells, highlighting a complicating factor with AAV-mediated delivery of DNA nucleases. Taken together, we demonstrate a uniquely effective approach for somatic engineering of the murine lung, which will greatly facilitate the modeling of disease and therapeutic intervention.

6.
Nature ; 611(7934): 148-154, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36171287

RESUMO

Recent single-cell studies of cancer in both mice and humans have identified the emergence of a myofibroblast population specifically marked by the highly restricted leucine-rich-repeat-containing protein 15 (LRRC15)1-3. However, the molecular signals that underlie the development of LRRC15+ cancer-associated fibroblasts (CAFs) and their direct impact on anti-tumour immunity are uncharacterized. Here in mouse models of pancreatic cancer, we provide in vivo genetic evidence that TGFß receptor type 2 signalling in healthy dermatopontin+ universal fibroblasts is essential for the development of cancer-associated LRRC15+ myofibroblasts. This axis also predominantly drives fibroblast lineage diversity in human cancers. Using newly developed Lrrc15-diphtheria toxin receptor knock-in mice to selectively deplete LRRC15+ CAFs, we show that depletion of this population markedly reduces the total tumour fibroblast content. Moreover, the CAF composition is recalibrated towards universal fibroblasts. This relieves direct suppression of tumour-infiltrating CD8+ T cells to enhance their effector function and augments tumour regression in response to anti-PDL1 immune checkpoint blockade. Collectively, these findings demonstrate that TGFß-dependent LRRC15+ CAFs dictate the tumour-fibroblast setpoint to promote tumour growth. These cells also directly suppress CD8+ T cell function and limit responsiveness to checkpoint blockade. Development of treatments that restore the homeostatic fibroblast setpoint by reducing the population of pro-disease LRRC15+ myofibroblasts may improve patient survival and response to immunotherapy.


Assuntos
Fibroblastos Associados a Câncer , Proteínas de Membrana , Miofibroblastos , Neoplasias Pancreáticas , Células Estromais , Animais , Humanos , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Antígeno B7-H1
7.
Mol Biol Rep ; 49(4): 3281-3288, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35107736

RESUMO

INTRODUCTION: Gene targeting in mouse ES cells replaces or modifies genes of interest; conditional alleles, reporter knock-ins, and amino acid changes are common examples of how gene targeting is used. For example, enhanced green fluorescent protein or Cre recombinase is placed under the control of endogenous genes to define promoter expression patterns. METHODS AND RESULTS: The most important step in the process is to demonstrate that a gene targeting vector is correctly integrated in the genome at the desired chromosomal location. The rapid identification of correctly targeted ES cell clones is facilitated by proper targeting vector construction, rapid screening procedures, and advances in cell culture. Here, we optimized and functionally linked magnetic activated cell sorting (MACS) technology as well as multiplex droplet digital PCR (ddPCR) to our ES cell screening process to achieve a greater than 60% assurance that ES clones are correctly targeted. In a further refinement of the process, drug selection cassettes are removed from ES cells with adenovirus technology. We describe this improved workflow and illustrate the reduction in time between therapeutic target identification and experimental validation. CONCLUSION: In sum, we describe a novel and effective implementation of ddPCR, multiMACS, and adenovirus recombinase into a streamlined screening workflow that significantly reduces timelines for gene targeting in mouse ES cells.


Assuntos
Células-Tronco Embrionárias , Vetores Genéticos , Alelos , Animais , Células-Tronco Embrionárias/metabolismo , Marcação de Genes/métodos , Vetores Genéticos/genética , Genótipo , Camundongos
8.
Nature ; 593(7860): 575-579, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981032

RESUMO

Fibroblasts are non-haematopoietic structural cells that define the architecture of organs, support the homeostasis of tissue-resident cells and have key roles in fibrosis, cancer, autoimmunity and wound healing1. Recent studies have described fibroblast heterogeneity within individual tissues1. However, the field lacks a characterization of fibroblasts at single-cell resolution across tissues in healthy and diseased organs. Here we constructed fibroblast atlases by integrating single-cell transcriptomic data from about 230,000 fibroblasts across 17 tissues, 50 datasets, 11 disease states and 2 species. Mouse fibroblast atlases and a DptIRESCreERT2 knock-in mouse identified two universal fibroblast transcriptional subtypes across tissues. Our analysis suggests that these cells can serve as a reservoir that can yield specialized fibroblasts across a broad range of steady-state tissues and activated fibroblasts in disease. Comparison to an atlas of human fibroblasts from perturbed states showed that fibroblast transcriptional states are conserved between mice and humans, including universal fibroblasts and activated phenotypes associated with pathogenicity in human cancer, fibrosis, arthritis and inflammation. In summary, a cross-species and pan-tissue approach to transcriptomics at single-cell resolution has identified key organizing principles of the fibroblast lineage in health and disease.


Assuntos
Fibroblastos/citologia , Transcriptoma , Animais , Células Cultivadas , Doença , Feminino , Fibroblastos/classificação , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias , Especificidade de Órgãos , Fenótipo , RNA-Seq , Análise de Célula Única , Células Estromais
9.
Nature ; 587(7833): 275-280, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32971525

RESUMO

Mutations in the death receptor FAS1,2 or its ligand FASL3 cause autoimmune lymphoproliferative syndrome, whereas mutations in caspase-8 or its adaptor FADD-which mediate cell death downstream of FAS and FASL-cause severe immunodeficiency in addition to autoimmune lymphoproliferative syndrome4-6. Mouse models have corroborated a role for FADD-caspase-8 in promoting inflammatory responses7-12, but the mechanisms that underlie immunodeficiency remain undefined. Here we identify NEDD4-binding protein 1 (N4BP1) as a suppressor of cytokine production that is cleaved and inactivated by caspase-8. N4BP1 deletion in mice increased the production of select cytokines upon stimulation of the Toll-like receptor (TLR)1-TLR2 heterodimer (referred to herein as TLR1/2), TLR7 or TLR9, but not upon engagement of TLR3 or TLR4. N4BP1 did not suppress TLR3 or TLR4 responses in wild-type macrophages, owing to TRIF- and caspase-8-dependent cleavage of N4BP1. Notably, the impaired production of cytokines in response to TLR3 and TLR4 stimulation of caspase-8-deficient macrophages13 was largely rescued by co-deletion of N4BP1. Thus, the persistence of intact N4BP1 in caspase-8-deficient macrophages impairs their ability to mount robust cytokine responses. Tumour necrosis factor (TNF), like TLR3 or TLR4 agonists, also induced caspase-8-dependent cleavage of N4BP1, thereby licensing TRIF-independent TLRs to produce higher levels of inflammatory cytokines. Collectively, our results identify N4BP1 as a potent suppressor of cytokine responses; reveal N4BP1 cleavage by caspase-8 as a point of signal integration during inflammation; and offer an explanation for immunodeficiency caused by mutations of FADD and caspase-8.


Assuntos
Caspase 8/metabolismo , Citocinas/imunologia , Imunidade Inata/imunologia , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Citocinas/antagonistas & inibidores , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
10.
Science ; 364(6437): 283-285, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31000662

RESUMO

Malignancies arising from mutation of tumor suppressors have unexplained tissue proclivity. For example, BAP1 encodes a widely expressed deubiquitinase for histone H2A, but germline mutations are predominantly associated with uveal melanomas and mesotheliomas. We show that BAP1 inactivation causes apoptosis in mouse embryonic stem cells, fibroblasts, liver, and pancreatic tissue but not in melanocytes and mesothelial cells. Ubiquitin ligase RNF2, which silences genes by monoubiquitinating H2A, promoted apoptosis in BAP1-deficient cells by suppressing expression of the prosurvival genes Bcl2 and Mcl1. In contrast, BAP1 loss in melanocytes had little impact on expression of prosurvival genes, instead inducing Mitf Thus, BAP1 appears to modulate gene expression by countering H2A ubiquitination, but its loss only promotes tumorigenesis in cells that do not engage an RNF2-dependent apoptotic program.


Assuntos
Apoptose/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Uveais/genética , Animais , Técnicas de Introdução de Genes , Mutação em Linhagem Germinativa , Histonas , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/patologia , Mesotelioma/genética , Mesotelioma/patologia , Camundongos , Camundongos Mutantes , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitinação , Neoplasias Uveais/patologia
11.
Immunohorizons ; 2(5): 164-171, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31022698

RESUMO

Intestinal epithelial cells form a physical barrier that is tightly regulated to control intestinal permeability. Proinflammatory cytokines, such as TNF-α, increase epithelial permeability through disruption of epithelial junctions. The regulation of the epithelial barrier in inflammatory gastrointestinal disease remains to be fully characterized. In this article, we show that the human inflammatory bowel disease genetic susceptibility gene C1ORF106 plays a key role in regulating gut epithelial permeability. C1ORF106 directly interacts with cytohesins to maintain functional epithelial cell junctions. C1orf106-deficient mice are hypersensitive to TNF-α-induced increase in epithelial permeability, and this is associated with increased diarrhea. This study identifies C1ORF106 as an epithelial cell junction protein, and the loss of C1ORF106 augments TNF-α-induced intestinal epithelial leakage and diarrhea that may play a critical role in the development of inflammatory bowel disease.


Assuntos
Proteínas de Transporte/genética , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Animais , Células CACO-2 , Proteínas de Transporte/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células Epiteliais/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/genética
12.
Cell ; 170(3): 577-592.e10, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753431

RESUMO

Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines. We describe findings of this screen, outlining the classes of cancer dependency genes and their relationships to genetic, expression, and lineage features. In addition, we describe robust gene-interaction networks recapitulating both protein complexes and functional cooperation among complexes and pathways. This dataset along with a web portal is provided to the community to assist in the discovery and translation of new therapeutic approaches for cancer.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Interferência de RNA , Linhagem Celular Tumoral , Biblioteca Gênica , Redes Reguladoras de Genes , Humanos , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Oncogenes , RNA Interferente Pequeno , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...