Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 208: 614-629, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722568

RESUMO

In the tumor microenvironment (TME), communication between cancer cells and tumor-associated macrophages (TAMs) through secreted extracellular proteins promotes cancer progression. Here, we observed that co-culturing cancer cells (4T1) and macrophage cells (Raw264.7) significantly enhanced superoxide production in both cell types. Using MALDI-TOF, we identified PKM2 as a highly secreted protein by Raw264.7 cells and bone marrow-derived monocytes. The extracellular recombinant PKM2 protein not only enhanced cancer cell migration and invasion but also increased superoxide production. Additionally, PKM2 was found to associate with the cell surface, and its binding to integrin α5/ß1 receptor was inhibited by antibodies specifically targeting it. Furthermore, we investigated downstream signaling pathways involved in PKM2-induced superoxide production. We found that knock-down of RhoA and p47phox using siRNAs effectively abolished superoxide generation in response to extracellular PKM2. Notably, extracellular PKM2 triggered the phosphorylation of p47phox at Ser345 residue and RhoA at Tyr42 residue (p-Tyr42 RhoA). Moreover, extracellular PKM2 exerted regulatory control over the expression of key epithelial-mesenchymal transition (EMT) markers, including ZEB1, Snail1, vimentin, and E-cadherin. Interestingly, p-Tyr42 RhoA translocated to the nucleus, where it bound to the ZEB1 promoter region. In light of these findings, we propose that extracellular PKM2 within the TME plays a critical role in tumorigenesis by promoting cancer cell migration and invasion through RhoA/p47phox signaling pathway.


Assuntos
Neoplasias , Superóxidos , Humanos , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Transdução de Sinais , Microambiente Tumoral/genética , Animais , Camundongos , Proteínas de Ligação a Hormônio da Tireoide
2.
Biomedicines ; 10(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35740278

RESUMO

Insulin potently promotes cell proliferation and anabolic metabolism along with a reduction in blood glucose levels. Pyruvate dehydrogenase (PDH) plays a pivotal role in glucose metabolism. Insulin increase PDH activity by attenuating phosphorylated Ser293 PDH E1α (p-PDHA1) in normal liver tissue. In contrast to normal hepatocytes, insulin enhanced p-PDHA1 level and induced proliferation of hepatocellular carcinoma HepG2 cells. Here, we attempted to find a novel function of p-PDHA1 in tumorigenesis upon insulin stimulation. We found that p-Ser293 E1α, but not the E2 or E3 subunit of pyruvate dehydrogenase complex (PDC), co-immunoprecipitated with pyruvate kinase M2 (PKM2) upon insulin. Of note, the p-PDHA1 along with PKM2 translocated to the nucleus. The p-PDHA1/PKM2 complex was associated with the promoter of long intergenic non-protein coding (LINC) 00273 gene (LINC00273) and recruited p300 histone acetyl transferase (HAT) and ATP citrate lyase (ACL), leading to histone acetylation. Consequently, the level of transcription factor ZEB1, an epithelial-mesenchymal transition (EMT) marker, was promoted through increased levels of LINC00273, resulting in cell migration upon insulin. p-PDHA1, along with PKM2, may be crucial for transcriptional regulation of specific genes through epigenetic regulation upon insulin in hepatocarcinoma cells.

3.
J Cell Physiol ; 237(1): 128-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311499

RESUMO

Glucose metabolism is a mechanism by which energy is produced in form of adenosine triphosphate (ATP) by mitochondria and precursor metabolites are supplied to enable the ultimate enrichment of mature metabolites in the cell. Recently, glycolytic enzymes have been shown to have unconventional but important functions. Among these enzymes, pyruvate kinase M2 (PKM2) plays several roles including having conventional metabolic enzyme activity, and also being a transcriptional regulator and a protein kinase. Compared with the closely related PKM1, PKM2 is highly expressed in cancer cells and embryos, whereas PKM1 is dominant in mature, differentiated cells. Posttranslational modifications such as phosphorylation and acetylation of PKM2 change its cellular functions. In particular, PKM2 can translocate to the nucleus, where it regulates the transcription of many target genes. It is notable that PKM2 also acts as a protein kinase to phosphorylate several substrate proteins. Besides cancer cells and embryonic cells, astrocytes also highly express PKM2, which is crucial for lactate production via expression of lactate dehydrogenase A (LDHA), while mature neurons predominantly express PKM1. The lactate produced in cancer cells promotes tumor progress and that in astrocytes can be supplied to neurons and may act as a major source for neuronal ATP energy production. Thereby, we propose that PKM2 along with its different posttranslational modifications has specific purposes for a variety of cell types, performing unique functions.


Assuntos
Leucemia Mieloide Aguda , Piruvato Quinase , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Glicólise/fisiologia , Humanos , Lactatos , Proteínas Quinases/metabolismo , Piruvato Quinase/genética
4.
Redox Biol ; 32: 101446, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32046944

RESUMO

Both the accumulation of Amyloid-ß (Aß) in plaques and phosphorylation of Tau protein (p-Tau) in neurofibrillary tangles have been identified as two major symptomatic features of Alzheimer's disease (AD). Despite of critical role of Aß and p-Tau in AD progress, the interconnection of signalling pathways that Aß induces p-Tau remains elusive. Herein, we observed that a popular AD model mouse (APP/PS1) and Aß-injected mouse showed an increase in p-Tyr42 Rho in hippocampus of brain. Low concentrations of Aß (1 µM) induced RhoA-mediated Ser422 phosphorylation of Tau protein (p-Ser422 Tau), but reduced the expression of ATP citrate lyase (ACL) in the HT22 hippocampal neuronal cell line. In contrast, high concentrations of Aß (10 µM) along with high levels of superoxide production remarkably attenuated accumulation of p-Ser422 Tau, but augmented ACL expression and activated sterol regulatory element-binding protein 1 (SREBP1), leading to cellular senescence. Notably, a high concentration of Aß (10 µM) induced nuclear localization of p-Tyr42 Rho, which positively regulated NAD kinase (NADK) expression by binding to the NADK promoter. Furthermore, severe AD patient brain showed high p-Tyr42 Rho levels. Collectively, our findings indicate that both high and low concentrations of Aß are detrimental to neurons via distinct two p-Tyr42 RhoA-mediated signalling pathways in Ser422 phosphorylation of Tau and ACL expression.


Assuntos
Doença de Alzheimer , Proteínas tau , ATP Citrato (pro-S)-Liase , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína rhoA de Ligação ao GTP/genética , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Biochem Biophys Res Commun ; 523(4): 972-978, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31973815

RESUMO

Optimal levels of reactive oxygen species (ROS) play a critical role in cellular physiological function. For production of intracellular superoxide, NADPH oxidase is one of the sources. Rac1/2 and RhoA GTPases are involved in regulation of NADPH oxidase activity and Tyr42 phosphorylation of RhoA (p-Tyr42 RhoA) seems significant in this regard as it was recently shown that hydrogen peroxide was able to increase p-Tyr42 RhoA levels. Phorbol myristate acetate (PMA), a tumor promoter, also induces production of superoxides; PMA activates Src, a tyrosine kinase, and increases p-Tyr42 RhoA levels. In exploring the mechanism of PMA effects, we reduced RhoA levels in test cells with si-RhoA and then restoration of various versions of RhoA for effect in response of the cells to PMA and producing superoxides. Restoration of RhoA Y42F (a dephospho-mimic form) still had reduced superoxide formation in response to PMA, compared with WT and Y42E RhoA. This was similarly seen with assays for cell migration and proliferation with cells responding to PMA. Y27632, a ROCK (Rho associated coiled coil kinase) inhibitor, also inhibited superoxide production, and also reduced p-Y416 Src and p-p47phox levels. A ROCK active fragment was also able to phosphorylate p47phox at Ser345 residue (p-Ser345 p47phox), a component of NADPH oxidase. Overall, we demonstrate that p-Tyr42 RhoA levels increase following PMA treatment and this is through production of superoxide and activation of Src. These in turn amplify superoxide production through ROCK phophorylation of p47phox and maintain a positive feedback loop for superoxide generation, and contribute to tumor progression.


Assuntos
NADPH Oxidases/metabolismo , Fosfotirosina/metabolismo , Superóxidos/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células A549 , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Fosforilação , Células RAW 264.7 , Acetato de Tetradecanoilforbol/farmacologia , Quinases da Família src/metabolismo
6.
FASEB J ; 33(2): 2072-2083, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30226812

RESUMO

Insulin is a critical signaling molecule in reducing blood glucose levels, and pyruvate dehydrogenase (PDH) is an essential enzyme in regulating glucose metabolism. However, the insulin effect on PDH function has not been well established. We observed that insulin attenuated the phosphorylation (p) of Ser264 (p-Ser264) in the PDH E1α subunit (PDHA1) in normal rat hepatocyte. In contrast, insulin induced an increase of p-Ser264 PDHA1 levels in hepatocellular carcinoma HepG2 and Huh7 cells. Insulin activated RhoA and Rho-dependent coiled coil kinase, an effector protein of active RhoA, which regulated p-Ser264 PDHA1 levels, along with both p-Ser9 and p-Tyr216 forms of glycogen synthase kinase-3ß (GSK-3ß) in HepG2 cells. Only p-Tyr216 GSK-3ß, the active form was involved in an increase of p-Ser264 PDHA1. Akt was also engaged in p-Ser9 of GSK-3ß, but neither in p-Tyr216 of GSK-3ß nor p-Ser264 of PDHA1 upon insulin. Reconstituted dephospho-mimic forms PDHA1 S264A and GSK-3ß Y216F impaired, but wild-types PDHA1 and GSK-3ß and phospho-mimic forms PDHA1 S264D and GSK-3ß Y216E increased cell proliferation upon insulin through expression of c-Myc and cyclin D1. Therefore, we propose that insulin-mediated p-PDHA1 is involved in the regulation of HepG2 cell proliferation through RhoA signaling pathway.-Islam, R., Kim, J.-G., Park, Y., Cho, J.-Y., Cap, K.-C., Kho, A.-R., Chung, W.-S., Suh, S.-W., Park, J.-B. Insulin induces phosphorylation of pyruvate dehydrogenase through RhoA activation pathway in HepG2 cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Insulina/farmacologia , Piruvato Desidrogenase (Lipoamida)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Proliferação de Células/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Hep G2 , Humanos , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase (Lipoamida)/genética , Ratos , Transdução de Sinais/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética
7.
J Cell Physiol ; 233(9): 6381-6392, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29377108

RESUMO

RhoA GTPase plays a variety of functions in regulation of cytoskeletal proteins, cellular morphology, and migration along with various proliferation and transcriptional activity in cells. RhoA activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and the guanine nucleotide dissociation factor (GDI). The RhoA-RhoGDI complex exists in the cytosol and the active GTP-bound form of RhoA is located to the membrane. GDI displacement factors (GDFs) including IκB kinase γ (IKKγ) dissociate the RhoA-GDI complex, allowing activation of RhoA through GEFs. In addition, modifications of Tyr42 phosphorylation and Cys16/20 oxidation in RhoA and Tyr156 phosphorylation and oxidation of RhoGDI promote the dissociation of the RhoA-RhoGDI complex. The expression of RhoA is regulated through transcriptional factors such as c-Myc, HIF-1α/2α, Stat 6, and NF-κB along with several reported microRNAs. As the role of RhoA in regulating actin-filament formation and myosin-actin interaction has been well described, in this review we focus on the transcriptional activity of RhoA and also the regulation of RhoA message itself. Of interest, in the cytosol, activated RhoA induces transcriptional changes through filamentous actin (F-actin)-dependent ("actin switch") or-independent means. RhoA regulates the activity of several transcription regulators such as serum response factor (SRF)/MAL, AP-1, NF-κB, YAP/TAZ, ß-catenin, and hypoxia inducible factor (HIF)-1α. Interestingly, RhoA also itself is localized to the nucleus by an as-yet-undiscovered mechanism.


Assuntos
Fatores de Transcrição/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Citosol/metabolismo , Humanos , NF-kappa B/metabolismo , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...