Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958716

RESUMO

Macrophages serve as vital defenders, protecting the body by exhibiting remarkable cellular adaptability in response to invading pathogens and various stimuli. These cells express nicotinic acetylcholine receptors, with the α7-nAChR being extensively studied due to its involvement in activating the cholinergic anti-inflammatory pathway. Activation of this pathway plays a crucial role in suppressing macrophages' production of proinflammatory cytokines, thus mitigating excessive inflammation and maintaining host homeostasis. Macrophage polarization, which occurs in response to specific pathogens or insults, is a process that has received limited attention concerning the activation of the cholinergic anti-inflammatory pathway and the contributions of the α7-nAChR in this context. This review aims to present evidence highlighting how the cholinergic constituents in macrophages, led by the α7-nAChR, facilitate the polarization of macrophages towards anti-inflammatory phenotypes. Additionally, we explore the influence of viral infections on macrophage inflammatory phenotypes, taking into account cholinergic mechanisms. We also review the current understanding of macrophage polarization in response to these infections. Finally, we provide insights into the relatively unexplored partial duplication of the α7-nAChR, known as dup α7, which is emerging as a significant factor in macrophage polarization and inflammation scenarios.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Colinérgicos/metabolismo , Macrófagos/metabolismo , Receptores Nicotínicos/metabolismo , Inflamação/metabolismo
2.
Vaccines (Basel) ; 11(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243079

RESUMO

We have developed a pipeline to express, purify, and characterize HIV envelope protein (Env) gp145 from Chinese hamster ovary cells, to accelerate the production of a promising vaccine candidate. First in shake flasks, then in bioreactors, we optimized the growth conditions. By adjusting the pH to 6.8, we increased expression levels to 101 mg/L in a 50 L bioreactor, nearly twice the previously reported titer value. A battery of analytical methods was developed in accordance with current good manufacturing practices to ensure a quality biopharmaceutical. Imaged capillary isoelectric focusing verified proper glycosylation of gp145; dynamic light scattering confirmed the trimeric arrangement; and bio-layer interferometry and circular dichroism analysis demonstrated native-like properties (i.e., antibody binding and secondary structure). MALDI-TOF mass spectrometry was used as a multi-attribute platform for accurate mass determination, glycans analysis, and protein identification. Our robust analysis demonstrates that our gp145 product is very similar to a reference standard and emphasizes the importance of accurate characterization of a highly heterogeneous immunogen for the development of an effective vaccine. Finally, we present a novel guanosine microparticle with gp145 encapsulated and displayed on its surface. The unique properties of our gp145 microparticle make it amenable to use in future preclinical and clinical trials.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33571843

RESUMO

A reversed phase high performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of recombinant HIV-1 gp145 produced in CHO-K1 cells, as measured directly from culture supernatants. Samples were diluted in 50% D-PBS and 50% PowerCHO-2 (PC2) spent medium, and resolved on a Zorbax 300SB-C8 Rapid Resolution (2.1 × 50 mm, 3.5 µm) column, fitted with a C8 guard column (Zorbax 300SB-C8, 2.1 × 12.5 mm, 5 µm), using 0.1% TFA and 2% n-propanol in LC-MS water as mobile phase A and 0.1% TFA, 70% isopropanol, and 20% acetonitrile in LC-MS water as mobile phase B. The column temperature was 80 °C, the flow rate was 0.4 mL/min and the absorbance was monitored at 280 nm. The procedures and capabilities of the method were evaluated against the criteria for linearity, limit of detection (LOD), accuracy, repeatability, and robustness as defined by the International Conference on Harmonization (ICH) 2005 Q2(R1) guidelines. Two different variants of the HIV-1 envelope protein (Env), CO6980v0c22 gp145 and SF162 gp140, were analyzed and their retention times were found to be different. The method showed good linearity (R2 = 0.9996), a lower LOD of 2.4 µg/mL, and an average recovery of 101%. The analysis includes measurements of accuracy, inter-user precision, and robustness. Overall, we present a RP-HPLC method that could be applied for the quantitation of cell culture titers for this and other variants of HIV Env following ICH guidelines.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Produtos do Gene env do Vírus da Imunodeficiência Humana/análise , Animais , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Limite de Detecção , Modelos Lineares , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
4.
Front Endocrinol (Lausanne) ; 11: 583006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101215

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its clinical manifestation (COVID-19; coronavirus disease 2019) have caused a worldwide health crisis. Disruption of epithelial and endothelial barriers is a key clinical turning point that differentiates patients who are likely to develop severe COVID-19 outcomes: it marks a significant escalation in respiratory symptoms, loss of viral containment and a progression toward multi-organ dysfunction. These barrier mechanisms are independently compromised by known COVID-19 risk factors, including diabetes, obesity and aging: thus, a synergism between these underlying conditions and SARS-CoV-2 mechanisms may explain why these risk factors correlate with more severe outcomes. This review examines the key cellular mechanisms that SARS-CoV-2 and its underlying risk factors utilize to disrupt barrier function. As an outlook, we propose that glucagon-like peptide 1 (GLP-1) may be a therapeutic intervention that can slow COVID-19 progression and improve clinical outcome following SARS-CoV-2 infection. GLP-1 signaling activates barrier-promoting processes that directly oppose the pro-inflammatory mechanisms commandeered by SARS-CoV-2 and its underlying risk factors.


Assuntos
Envelhecimento/patologia , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Diabetes Mellitus/fisiopatologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Inflamação/fisiopatologia , Obesidade/fisiopatologia , Pneumonia Viral/epidemiologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Humanos , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2
5.
PLoS One ; 15(6): e0231679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559193

RESUMO

The envelope glycoprotein (Env) of the human immunodeficiency virus (HIV), has been the primary target for the development of a protective vaccine against infection. The extensive N-linked glycosylation on Env is an important consideration as it may affect efficacy, stability, and expression yields. The expression host has been shown to influence the extent and type of glycosylation that decorates the protein target. Here, we report the glycosylation profile of the candidate subtype C immunogen CO6980v0c22 gp145, which is currently in Phase I clinical trials, produced in two different host cells: CHO-K1 and Expi293F. The amino acid sequence for both glycoproteins was confirmed to be identical by peptide mass fingerprinting. However, the isoelectric point of the proteins differed; 4.5-5.5 and 6.0-7.0 for gp145 produced in CHO-K1 and Expi293F, respectively. These differences in pI were eliminated by enzymatic treatment with sialidase, indicating a large difference in the incorporation of sialic acid between hosts. This dramatic difference in the number of sialylated glycans between hosts was confirmed by analysis of PNGase F-released glycans using MALDI-ToF MS. These differences in glycosylation, however, did not greatly translate into differences in antibody recognition. Biosensor assays showed that gp145 produced in CHO-K1 had similar affinity toward the broadly neutralizing antibodies, 2G12 and PG16, as the gp145 produced in Expi293F. Additionally, both immunogens showed the same reactivity against plasma of HIV-infected patients. Taken together, these results support the notion that there are sizeable differences in the glycosylation of Env depending on the expression host. How these differences translate to vaccine efficacy remains unknown.


Assuntos
Glicopeptídeos/análise , Anticorpos Anti-HIV/imunologia , HIV-1/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , Células CHO , Cricetinae , Cricetulus , Feminino , Glicosilação , Células HEK293 , Humanos , Pessoa de Meia-Idade , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
6.
Cell Mol Neurobiol ; 38(7): 1335-1348, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30008143

RESUMO

Infection with the human immunodeficiency virus (HIV) remains a threat to global health. Since its discovery, many efforts have been directed at understanding the mechanisms and consequences of infection. Although there have been substantial advances since the advent of antiretroviral therapy, there are still complications that significantly compromise the health of infected patients, particularly, chronic inflammation and HIV-associated neurocognitive disorders (HAND). In this review, a new perspective is addressed in the field of HIV, where the alpha7 nicotinic acetylcholine receptor (α7-nAChR) is the protagonist. We comprehensively discuss the available evidence implicating α7-nAChRs in the context of HIV and provide possible explanations about its role in HAND and inflammation in both the central nervous system and the periphery.


Assuntos
Complexo AIDS Demência/metabolismo , Inflamação/metabolismo , Receptores Nicotínicos/metabolismo , Complexo AIDS Demência/tratamento farmacológico , Animais , Terapia Antirretroviral de Alta Atividade , Humanos , Modelos Biológicos , Sistema Nervoso/patologia
7.
Sci Rep ; 8(1): 1829, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379089

RESUMO

Currently, there are no specific therapies to treat HIV-1 associated neurocognitive disorders (HAND). The HIV-1 envelope, gp120, induces neuropathological changes similar to those in HAND patients; furthermore, it triggers an upregulation of the α7-nicotinic acetylcholine receptor (α7-nAChR), facilitating intracellular calcium overload and neuronal cell death. Using a gp120IIIB-transgenic mouse (gp120-tgm) model, we demonstrate that α7-nAChRs are upregulated on striatal neurons. Activation of α7-nAChRs leads to an increase in both intracellular calcium and percentage of apoptotic cells, which can be abrogated by antagonizing the receptor, suggesting a role for α7-nAChRs in gp120-induced neurotoxicity. Moreover, we demonstrate for the first time that gp120-tgm have learning deficiencies on a striatum-dependent behavioral task. They also show locomotor deficiencies, which improved with α7-nAChR antagonists, further supporting a role for this receptor in gp120-induced neurotoxicity. Together, these results uncover a new mechanism through which gp120-induced modulation of α7-nAChRs in the striatum can contribute to HAND development.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Transtornos Neurocognitivos/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Morte Celular/fisiologia , Corpo Estriado/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Nicotínicos/metabolismo
8.
J Neurovirol ; 22(3): 358-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26567011

RESUMO

The mechanisms leading to the neurocognitive deficits in humans with immunodeficiency virus type 1 (HIV-1) are not well resolved. A number of cell culture models have demonstrated that the HIV-envelope glycoprotein 120 (gp120) decreases the reuptake of glutamate, which is necessary for learning, memory, and synaptic plasticity. However, the impact of brain HIV-1 gp120 on glutamate uptake systems in vivo remains unknown. Notably, alterations in brain glutamate uptake systems are implicated in a number of neurodegenerative and neurocognitive disorders. We characterized the kinetic properties of system XAG (sodium-dependent) and systems xc- (sodium-independent) [3H]-L-glutamate uptake in the striatum and hippocampus of HIV-1 gp120 transgenic mice, an established model of HIV neuropathology. We determined the kinetic constant Vmax (maximal velocity) and Km (affinity) of both systems XAG and xc- using subcellular preparations derived from neurons and glial cells. We show significant (30-35 %) reductions in the Vmax of systems XAG and xc- in both neuronal and glial preparations derived from the striatum, but not from the hippocampus of gp120 mice relative to wild-type (WT) controls. Moreover, immunoblot analysis showed that the protein expression of glutamate transporter subtype-1 (GLT-1), the predominant brain glutamate transporter, was significantly reduced in the striatum but not in the hippocampus of gp120 mice. These extensive and region-specific deficits of glutamate uptake likely contribute to the development and/or severity of HIV-associated neurocognitive disorders. Understanding the role of striatal glutamate uptake systems in HIV-1 gp120 may advance the development of new therapeutic strategies to prevent neuronal damage and improve cognitive function in HIV patients.


Assuntos
Disfunção Cognitiva/metabolismo , Corpo Estriado/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/metabolismo , HIV-1/patogenicidade , Neuroglia/metabolismo , Animais , Disfunção Cognitiva/complicações , Disfunção Cognitiva/genética , Disfunção Cognitiva/virologia , Corpo Estriado/virologia , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/deficiência , Ácido Glutâmico/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/complicações , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Hipocampo/metabolismo , Hipocampo/virologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neuroglia/virologia , Neurônios/metabolismo , Neurônios/virologia , Especificidade de Órgãos , Sinapses/metabolismo , Sinapses/virologia , Transgenes
9.
Clin Transl Immunology ; 4(12): e53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26719799

RESUMO

Antiretroviral therapy partially restores the immune system and markedly increases life expectancy of HIV-infected patients. However, antiretroviral therapy does not restore full health. These patients suffer from poorly understood chronic inflammation that causes a number of AIDS and non-AIDS complications. Here we show that chronic inflammation in HIV+ patients may be due to the disruption of the cholinergic anti-inflammatory pathway by HIV envelope protein gp120IIIB. Our results demonstrate that HIV gp120IIIB induces α7 nicotinic acetylcholine receptor (α7) upregulation and a paradoxical proinflammatory phenotype in macrophages, as activation of the upregulated α7 is no longer capable of inhibiting the release of proinflammatory cytokines. Our results demonstrate that disruption of the cholinergic-mediated anti-inflammatory response can result from an HIV protein. Collectively, these findings suggest that HIV tampering with a natural strategy to control inflammation could contribute to a crucial, unresolved problem of HIV infection: chronic inflammation.

10.
J Biol Chem ; 287(5): 3079-86, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22084248

RESUMO

Approximately 30-50% of the >30 million HIV-infected subjects develop neurological complications ranging from mild symptoms to dementia. HIV does not infect neurons, and the molecular mechanisms behind HIV-associated neurocognitive decline are not understood. There are several hypotheses to explain the development of dementia in HIV(+) individuals, including neuroinflammation mediated by infected microglia and neuronal toxicity by HIV proteins. A key protein associated with the neurological complications of HIV, gp120, forms part of the viral envelope and can be found in the CSF of infected individuals. HIV-1-gp120 interacts with several receptors including CD4, CCR5, CXCR4, and nicotinic acetylcholine receptors (nAChRs). However, the role of nAChRs in HIV-associated neurocognitive disorder has not been investigated. We studied the effects of gp120(IIIB) on the expression and function of the nicotinic receptor α7 (α7-nAChR). Our results show that gp120, through activation of the CXCR4 chemokine receptor, induces a functional up-regulation of α7-nAChRs. Because α7-nAChRs have a high permeability to Ca(2+), we performed TUNEL staining to investigate the effects of receptor up-regulation on cell viability. Our data revealed an increase in cell death, which was blocked by the selective antagonist α-bungarotoxin. The in vitro data are supported by RT-PCR and Western blot analysis, confirming a remarkable up-regulation of the α7-nAChR in gp120-transgenic mice brains. Specifically, α7-nAChR up-regulation is observed in mouse striatum, a region severely affected in HIV(+) patients. In summary, CXCR4 activation induces up-regulation of α7-nAChR, causing cell death, suggesting that α7-nAChR is a previously unrecognized contributor to the neurotoxicity associated with HIV infection.


Assuntos
Complexo AIDS Demência/metabolismo , Corpo Estriado/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores CXCR4/metabolismo , Receptores Nicotínicos/metabolismo , Complexo AIDS Demência/genética , Animais , Bungarotoxinas/farmacologia , Morte Celular/genética , Corpo Estriado/virologia , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Receptores CXCR4/genética , Receptores Nicotínicos/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...