Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 57(Pt 3): 690-699, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846768

RESUMO

Scintillator-based ZnS:Ag/6LiF neutron detectors have been under development at ISIS for more than three decades. Continuous research and development aim to improve detector capabilities, achieve better performance and meet the increasingly demanding requirements set by neutron instruments. As part of this program, a high-efficiency 2D position-sensitive scintillator detector with wavelength-shifting fibres has been developed for neutron-diffraction applications. The detector consists of a double scintillator-fibre layer to improve detection efficiency. Each layer is made up of two orthogonal fibre planes placed between two ZnS:Ag/6LiF scintillator screens. Thin reflective foils are attached to the front and back scintillators of each layer to minimize light cross-talk between layers. The detector has an active area of 192 × 192 mm with a square pixel size of 3 × 3 mm. As part of the development process of the double-layer detector, a single-layer detector was built, together with a prototype detector in which the two layers of the detector could be read out separately. Efficiency calculations and measurements of all three detectors are discussed. The novel double-layer detector has been installed and tested on the SXD diffractometer at ISIS. The detector performance is compared with the current scintillator detectors employed on SXD by studying reference crystal samples. More than a factor of 3 improvement in efficiency is achieved with the double-layer wavelength-shifting-fibre detector. Software routines for further optimizations in spatial resolution and uniformity of response have been implemented and tested for 2D detectors. The methods and results are discussed in this manuscript.

2.
Phys Rev Lett ; 131(22): 222501, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101385

RESUMO

We report on the results obtained with the global CUPID-0 background model, which combines the data collected in the two measurement campaigns for a total exposure of 8.82 kg×yr of ^{82}Se. We identify with improved precision the background sources within the 3 MeV energy region, where neutrinoless double ß decay of ^{82}Se and ^{100}Mo is expected, making more solid the foundations for the background budget of the next-generation CUPID experiment. Relying on the excellent data reconstruction, we measure the two-neutrino double ß-decay half-life of ^{82}Se with unprecedented accuracy: T_{1/2}^{2ν}=[8.69±0.05(stat)_{-0.06}^{+0.09}(syst)]×10^{19} yr.

4.
Phys Rev Lett ; 129(22): 222501, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493444

RESUMO

The Cryogenic Underground Observatory for Rare Events (CUORE) at Laboratori Nazionali del Gran Sasso of INFN in Italy is an experiment searching for neutrinoless double beta (0νßß) decay. Its main goal is to investigate this decay in ^{130}Te, but its ton-scale mass and low background make CUORE sensitive to other rare processes as well. In this Letter, we present our first results on the search for 0νßß decay of ^{128}Te, the Te isotope with the second highest natural isotopic abundance. We find no evidence for this decay, and using a Bayesian analysis we set a lower limit on the ^{128}Te 0νßß decay half-life of T_{1/2}>3.6×10^{24} yr (90% CI). This represents the most stringent limit on the half-life of this isotope, improving by over a factor of 30 the previous direct search results, and exceeding those from geochemical experiments for the first time.


Assuntos
Granisetron , Meia-Vida , Teorema de Bayes
5.
Phys Rev Lett ; 129(11): 111801, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154394

RESUMO

CUPID-0, an array of Zn^{82}Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers' technology. The first project phase (March 2017-December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, ^{82}Se, to be set. After a six month long detector upgrade, CUPID-0 began its second and last phase (June 2019-February 2020). In this Letter, we describe the search for neutrinoless double beta decay of ^{82}Se with a total exposure (phase I+II) of 8.82 kg yr^{-1} of isotope. We set a limit on the half-life of ^{82}Se to the ground state of ^{82}Kr of T_{1/2}^{0ν}(^{82}Se)>4.6×10^{24} yr (90% credible interval), corresponding to an effective Majorana neutrino mass m_{ßß}<(263-545) meV. We also set the most stringent lower limits on the neutrinoless decays of ^{82}Se to the 0_{1}^{+}, 2_{1}^{+}, and 2_{2}^{+} excited states of ^{82}Kr, finding 1.8×10^{23} yr, 3.0×10^{23} yr, and 3.2×10^{23} yr (90% credible interval) respectively.

6.
Eur Phys J C Part Fields ; 81(8): 722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720725

RESUMO

Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of α - α delayed coincidences in 232 Th and 238 U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the α decay position.

7.
Phys Rev Lett ; 126(17): 171801, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988435

RESUMO

We measured two-neutrino double beta decay of ^{130}Te using an exposure of 300.7 kg yr accumulated with the CUORE detector. Using a Bayesian analysis to fit simulated spectra to experimental data, it was possible to disentangle all the major background sources and precisely measure the two-neutrino contribution. The half-life is in agreement with past measurements with a strongly reduced uncertainty: T_{1/2}^{2ν}=7.71_{-0.06}^{+0.08}(stat)_{-0.15}^{+0.12}(syst)×10^{20} yr. This measurement is the most precise determination of the ^{130}Te 2νßß decay half-life to date.

8.
Phys Rev Lett ; 124(12): 122501, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281829

RESUMO

We report new results from the search for neutrinoless double-beta decay in ^{130} Te with the CUORE detector. This search benefits from a fourfold increase in exposure, lower trigger thresholds, and analysis improvements relative to our previous results. We observe a background of (1.38±0.07)×10^{-2} counts/(keV kg yr)) in the 0νßß decay region of interest and, with a total exposure of 372.5 kg yr, we attain a median exclusion sensitivity of 1.7×10^{25} yr. We find no evidence for 0νßß decay and set a 90% credibility interval Bayesian lower limit of 3.2×10^{25} yr on the ^{130} Te half-life for this process. In the hypothesis that 0νßß decay is mediated by light Majorana neutrinos, this results in an upper limit on the effective Majorana mass of 75-350 meV, depending on the nuclear matrix elements used.

9.
Phys Rev Lett ; 123(3): 032501, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386478

RESUMO

CUPID-0 is the first pilot experiment of CUPID, a next-generation project for the measurement of neutrinoless double beta decay (0νDBD) with scintillating bolometers. The detector, consisting of 24 enriched and 2 natural ZnSe crystals, has been taking data at Laboratori Nazionali del Gran Sasso from June 2017 to December 2018, collecting a ^{82}Se exposure of 5.29 kg×yr. In this Letter we present the phase-I results in the search for 0νDBD. We demonstrate that the technology implemented by CUPID-0 allows us to reach the lowest background for calorimetric experiments: (3.5_{-0.9}^{+1.0})×10^{-3} counts/(keV kg yr). Monitoring 3.88×10^{25} ^{82}Se nuclei×yr we reach a 90% credible interval median sensitivity of T_{1/2}^{0ν}>5.0×10^{24} yr and set the most stringent limit on the half-life of ^{82}Se 0νDBD: T_{1/2}^{0ν}>3.5×10^{24} yr (90% credible interval), corresponding to m_{ßß}<(311-638) meV depending on the nuclear matrix element calculations.

10.
Phys Rev Lett ; 123(26): 262501, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951429

RESUMO

We report on the measurement of the two-neutrino double-ß decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-ß decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19} yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

11.
Phys Rev Lett ; 121(6): 067202, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141658

RESUMO

Determining the fate of the Pauling entropy in the classical spin ice material Dy_{2}Ti_{2}O_{7} with respect to the third law of thermodynamics has become an important test case for understanding the existence and stability of ice-rule states in general. The standard model of spin ice-the dipolar spin ice model-predicts an ordering transition at T≈0.15 K, but recent experiments by Pomaranski et al. suggest an entropy recovery over long timescales at temperatures as high as 0.5 K, much too high to be compatible with the theory. Using neutron scattering and specific heat measurements at low temperatures and with long timescales (0.35 K/10^{6} s and 0.5 K/10^{5} s, respectively) on several isotopically enriched samples, we find no evidence of a reduction of ice-rule correlations or spin entropy. High-resolution simulations of the neutron structure factor show that the spin correlations remain well described by the dipolar spin ice model at all temperatures. Furthermore, by careful consideration of hyperfine contributions, we conclude that the original entropy measurements of Ramirez et al. are, after all, essentially correct: The short-time relaxation method used in that study gives a reasonably accurate estimate of the equilibrium spin ice entropy due to a cancellation of contributions.

12.
Phys Rev Lett ; 120(23): 232502, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932707

RESUMO

We report the result of the search for neutrinoless double beta decay of ^{82}Se obtained with CUPID-0, the first large array of scintillating Zn^{82}Se cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 kg yr ^{82}Se exposure, and we set the most stringent lower limit on the 0νßß ^{82}Se half-life T_{1/2}^{0ν}>2.4×10^{24} yr (90% credible interval), which corresponds to an effective Majorana neutrino mass m_{ßß}<(376-770) meV depending on the nuclear matrix element calculations. The heat-light readout provides a powerful tool for the rejection of α particles and allows us to suppress the background in the region of interest down to (3.6_{-1.4}^{+1.9})×10^{-3} counts/(keV kg yr), an unprecedented level for this technique.

13.
Phys Chem Chem Phys ; 20(24): 16736-16742, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29881856

RESUMO

Time-of-flight neutron powder diffraction data have been collected from C6H6 and C6D6, as a function of temperature between 10 and 276 K using the High Resolution Powder Diffractometer at the ISIS Neutron and Muon Source. In order to achieve high accuracy and precision both in the determination of lattice parameters and in the control of the sample temperature, data were acquired using the same instrumental conditions for each isotopologue with an internal NIST silicon standard and in situ-heated sample holders. In contrast with the work from J. D. Dunitz and R. M. Ibberson, Angew. Chem. Int. Ed., 2008, 47, 4208-4210, we find that the difference in molar volume between the two isotopologues is almost invariant with temperature and that the anisotropic linear expansivities of the crystallographic axes are nearly identical in C6H6 and C6D6.

14.
Phys Rev Lett ; 120(13): 132501, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694201

RESUMO

The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number-violating process: ^{130}Te neutrinoless double-beta decay. Examining a total TeO_{2} exposure of 86.3 kg yr, characterized by an effective energy resolution of (7.7±0.5) keV FWHM and a background in the region of interest of (0.014±0.002) counts/(keV kg yr), we find no evidence for neutrinoless double-beta decay. Including systematic uncertainties, we place a lower limit on the decay half-life of T_{1/2}^{0ν}(^{130}Te)>1.3×10^{25} yr (90% C.L.); the median statistical sensitivity of this search is 7.0×10^{24} yr. Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find T_{1/2}^{0ν}(^{130}Te)>1.5×10^{25} yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find m_{ßß}<(110-520) meV, where the range reflects the nuclear matrix element estimates employed.

15.
Eur Phys J C Part Fields ; 78(11): 888, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30881205

RESUMO

The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95 % enriched in 82 Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of 82 Se into the 0 1 + , 2 1 + and 2 2 + excited states of 82 Kr with an exposure of 5.74 kg · yr (2.24 × 10 25  emitters · yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: Γ ( 82 Se → 82 Kr 0 1 + )8.55 × 10 - 24  yr - 1 , Γ ( 82 Se → 82 Kr 2 1 + ) < 6.25 × 10 - 24  yr - 1 , Γ ( 82 Se → 82 Kr 2 2 + )8.25 × 10 - 24  yr - 1 (90 % credible interval).

16.
Eur Phys J C Part Fields ; 78(9): 734, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839752

RESUMO

The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by α particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn 82 Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the α background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters.

17.
Eur Phys J C Part Fields ; 78(5): 428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30996670

RESUMO

The CUPID-0 detector hosted at the Laboratori Nazionali del Gran Sasso, Italy, is the first large array of enriched scintillating cryogenic detectors for the investigation of 82 Se neutrinoless double-beta decay ( 0 ν ß ß ). CUPID-0 aims at measuring a background index in the region of interest (RoI) for 0 ν ß ß at the level of 10 - 3  counts/(keV kg years), the lowest value ever measured using cryogenic detectors. CUPID-0 operates an array of Zn 82 Se scintillating bolometers coupled with bolometric light detectors, with a state of the art technology for background suppression and thorough protocols and procedures for the detector preparation and construction. In this paper, the different phases of the detector design and construction will be presented, from the material selection (for the absorber production) to the new and innovative detector structure. The successful construction of the detector lead to promising preliminary detector performance which is discussed here.

18.
Eur Phys J C Part Fields ; 77(11): 785, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31997932

RESUMO

This paper reports on the development of a technology involving 100 Mo -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ( ∼ 1 kg ), high optical quality, radiopure 100 Mo -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of 100 Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α -induced dominant background above 2.6 MeV is better than 8 σ . Less than 10 µ Bq/kg activity of 232 Th ( 228 Th ) and 226 Ra in the crystals is ensured by boule recrystallization. The potential of 100 Mo -enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg × d exposure: the two neutrino double-beta decay half-life of 100 Mo has been measured with the up-to-date highest accuracy as T 1 / 2 = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10 18 years . Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100 Mo .

19.
Eur Phys J C Part Fields ; 76(7): 364, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28280442

RESUMO

The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in [Formula: see text]Se, the Zn[Formula: see text]Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn[Formula: see text]Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.

20.
Phys Rev Lett ; 115(10): 102502, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382673

RESUMO

We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of (130)Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1±0.3 keV FWHM and 0.058±0.004(stat)±0.002(syst)counts/(keV kg yr), respectively. The median 90% C.L. lower-limit half-life sensitivity of the experiment is 2.9×10(24) yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of (130)Te and place a Bayesian lower bound on the decay half-life, T(1/2)(0ν)>2.7×10(24) yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of (130)Te from the Cuoricino experiment we obtain T(1/2)(0ν)>4.0×10(24) yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, m(ßß)<270-760 meV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...