Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671851

RESUMO

High-fat diets (HFDs) enhance fish growth by optimizing nutrient utilization (i.e., protein-sparing effect); however, their potential negative effects have also encouraged the search for feed additives. This work has investigated the effects of an extract rich in a polyphenolic antioxidant, hydroxytyrosol (HT), supplemented (0.52 g HT/kg feed) in a HFD (24% lipid) in gilthead sea bream (Sparus aurata). Fish received the diet at two ration levels, standard (3% of total fish weight) or restricted (40% reduction) for 8 weeks. Animals fed the supplemented diet at a standard ration had the lowest levels of plasma free fatty acids (4.28 ± 0.23 mg/dL versus 6.42 ± 0.47 in the non-supplemented group) and downregulated hepatic mRNA levels of lipid metabolism markers (ppara, pparb, lpl, fatp1, fabp1, acox1, lipe and lipa), supporting potential fat-lowering properties of this compound in the liver. Moreover, the same animals showed increased muscle lipid content and peroxidation (1.58- and 1.22-fold, respectively, compared to the fish without HT), suggesting the modulation of body adiposity distribution and an enhanced lipid oxidation rate in that tissue. Our findings emphasize the importance of considering this phytocompound as an optimal additive in HFDs for gilthead sea bream to improve overall fish health and condition.

3.
Animals (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36978610

RESUMO

Fish oil is commonly replaced by vegetable oils in sea bream diets, but little is known about their effects on intestinal health regarding oxidative stress biomarkers. The negative effects of lipid peroxidation on digestive mucosa could have consequences in animal nutrition and welfare. In this study, five isonitrogenous (46%) and isolipidic (22%) diets with 75% of vegetable oils inclusion were evaluated: soybean oil (S) alone or different mixtures containing soybean oil with linseed (SL), linseed and rapeseed (SLR), linseed and palm (SLP), and linseed, rapeseed, and palm (SLRP). Gilthead sea bream juveniles were fed twice a day for 18 weeks. Pyloric caeca and proximal intestine samples were collected 24 h post feeding for lipid peroxidation (LPO), antioxidant enzyme activities (SOD, CAT, GPx, GST, and GR) and gene expression analyses. Pyloric caeca presented larger unhealthy changes in oxidative status than proximal intestine. Although SL-fed fish showed the highest antioxidant activities, they were unable to cope with LPO that in pyloric caeca was 31.4 times higher than in the other groups. Instead, SLP fish presented the best oxidative status, with low LPO levels, antioxidant enzyme activities, and gene expression. In summary, between the vegetable oils dietary mixtures tested, SPL would maintain better intestinal health.

4.
Front Endocrinol (Lausanne) ; 14: 1155202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998471

RESUMO

Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.


Assuntos
Tecido Adiposo , Obesidade , Animais , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Citocinas/metabolismo , Adipocinas/metabolismo , Músculo Esquelético/metabolismo , Osso e Ossos/metabolismo , Mamíferos/metabolismo
5.
Front Endocrinol (Lausanne) ; 14: 1101356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755925

RESUMO

Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.


Assuntos
Fator de Crescimento Insulin-Like I , Dourada , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Dourada/genética , Dourada/metabolismo , Músculos/metabolismo , Proteólise
6.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498967

RESUMO

Skeletal muscle is formed by multinucleated myofibers originated by waves of hyperplasia and hypertrophy during myogenesis. Tissue damage triggers a regeneration process including new myogenesis and muscular remodeling. During myogenesis, the fusion of myoblasts is a key step that requires different genes' expression, including the fusogens myomaker and myomixer. The present work aimed to characterize these proteins in gilthead sea bream and their possible role in in vitro myogenesis, at different fish ages and during muscle regeneration after induced tissue injury. Myomaker is a transmembrane protein highly conserved among vertebrates, whereas Myomixer is a micropeptide that is moderately conserved. myomaker expression is restricted to skeletal muscle, while the expression of myomixer is more ubiquitous. In primary myocytes culture, myomaker and myomixer expression peaked at day 6 and day 8, respectively. During regeneration, the expression of both fusogens and all the myogenic regulatory factors showed a peak after 16 days post-injury. Moreover, myomaker and myomixer were present at different ages, but in fingerlings there were significantly higher transcript levels than in juveniles or adult fish. Overall, Myomaker and Myomixer are valuable markers of muscle growth that together with other regulatory molecules can provide a deeper understanding of myogenesis regulation in fish.


Assuntos
Dourada , Animais , Dourada/genética , Dourada/metabolismo , Proteínas Musculares/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo , Micropeptídeos
7.
Front Physiol ; 13: 966175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277183

RESUMO

The dietary inclusion of plant-based products in fish feeds formulation is required for the sustainable development of aquaculture. Moreover, considering functional diets, hydroxytyrosol, one of the major phenolic compounds found in olives (Olea europaea), has been identified as a potential candidate to be used in the aquafeeds industry due to its health promoting abilities. The aim of this study was to evaluate the effects of the inclusion of an olive juice extract rich in hydroxytyrosol as an additive (0.52 g HT/kg feed) in a high-fat (24% lipids) diet in gilthead sea bream (Sparus aurata) juveniles. Moreover, the experimental diets, with or without the extract, were administered daily at a standard (3% of total biomass in the tank) or restricted ration (40% reduction) for 8-9 weeks. Growth and biometric parameters, insulin-like growth factor 1 (IGF-1) plasma levels and growth hormone/IGF axis-, myogenic- and osteogenic-related genes expression in liver, white muscle and/or bone were analyzed. Moreover, in vitro cultures of vertebra bone-derived cells from fish fed the diets at a standard ration were performed at weeks 3 and 9 to explore the effects of hydroxytyrosol on osteoblasts development. Although neither body weight or any other biometric parameter were affected by diet composition after 4 or 8 weeks, the addition of the hydroxytyrosol-rich extract to the diet increased IGF-1 plasma levels, regardless of the ration regime, suggesting an anabolic condition. In muscle, the higher mRNA levels of the binding protein igfbp-5b and the myoblast fusion marker dock5 in fish fed with the hydroxytyrosol-rich diet suggested that this compound may have a role in muscle, inducing development and a better muscular condition. Furthermore in bone, increased osteogenic potential while delayed matrix mineralization after addition to the diet of the olive juice extract was supported by the upregulated expression of igf-1 and bmp4 and reduced transcript levels of osteopontin. Overall, this study provides new insights into the beneficial use of hydroxytyrosol as a dietary additive in gilthead sea bream functional diets to improve muscle-skeletal condition and, the aquaculture industry.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35182764

RESUMO

To evaluate the effects of feeding frequency (FF) and dietary protein/carbohydrate (P/CH) ratios on appetite regulation of gilthead seabream, two practical diets were formulated to include high protein and low carbohydrate (P50/CH10 diet) or low protein and high carbohydrate (P40/CH20 diet) content and each diet was fed to triplicate groups of fish until visual satiation each meal at a FF of 1, 2, or 3 meals per day. Feed intake and feed conversion ratio were higher in fish fed 2 or 3 meals than 1 meal per day and in fish fed the P40/CH20 than the P50/CH10 diet. The specific growth rate was only affected by FF, being higher in fish fed 2 or 3 meals per day than 1 meal per day. Expression of the cocaine-amphetamine-related transcript, corticotropin-releasing hormone, ghrelin receptor-a (ghsr-a), leptin, and neuropeptide y in the brain, cholecystokinin (cck) in the intestine, and leptin and ghrelin in the stomach was not affected by FF or dietary P/CH ratio. This is the first time that ghrelin cells were immune-located in the stomach of gilthead seabream. Fish fed 3 meals per day presented lower cck expression in the brain than those fed twice per day and higher hepatic ghsr-b expression than those fed once per day. Fish fed P40/CH20 diet presented higher hepatic leptin expression than those fed P50/CH10 diet. In conclusion, present results indicate that feeding a P40/CH20 diet at 3 meals a day seems to decrease the satiation feeling of gilthead seabream compared to fish fed higher P/CH ratio diets or fed 1 or 2 meals a day.


Assuntos
Carboidratos da Dieta , Dourada , Animais , Regulação do Apetite , Colecistocinina/genética , Proteínas Alimentares , Ingestão de Alimentos , Grelina/genética , Leptina , Dourada/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-34848371

RESUMO

Adipogenesis is a tightly regulated process, and the involvement of autophagy has been recently proposed in mammalian models. In rainbow trout, two well-defined phases describe the development of primary cultured adipocyte cells: proliferation and differentiation. Nevertheless, information on the transcriptional profile at the onset of differentiation and the potential role of autophagy in this process is scarce. In the present study, the cells showed an early and transient induction of several adipogenic transcription factors genes' expression (i.e., cebpa and cebpb) along with the morphological changes (round shape filled with small lipid droplets) typical of the onset of adipogenesis. Then, the expression of various lipid metabolism-related genes involving the synthesis (fas), uptake (fatp1 and cd36), accumulation (plin2) and mobilization (hsl) of lipids, characteristic of the mature adipocyte, increased. In parallel, several autophagy markers (i.e., atg4b, gabarapl1 and lc3b) mirrored the expression of those adipogenic-related genes, suggesting a role of autophagy during in vitro fish adipogenesis. In this regard, the incubation of preadipocytes with lysosomal inhibitors (Bafilomycin A1 or Chloroquine), described to prevent autophagy flux, delayed the process of adipogenesis (i.e., cell remodelling), thus suggesting a possible relationship between autophagy and adipocyte differentiation in trout. Moreover, the disruption of the autophagic flux altered the expression of some key adipogenic genes such as cebpa and pparg. Overall, this study contributes to improve our knowledge on the regulation of rainbow trout adipocyte differentiation, and highlights for the first time in fish the involvement of autophagy on adipogenesis, suggesting a close-fitting connection between both processes.


Assuntos
Adipogenia , Oncorhynchus mykiss , Adipócitos , Adipogenia/genética , Animais , Autofagia , Diferenciação Celular , Metabolismo dos Lipídeos , Oncorhynchus mykiss/genética
10.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884912

RESUMO

Growth hormone and insulin-like growth factors (GH/IGF axis) regulate somatic growth in mammals and fish, although their action on metabolism is not fully understood in the latter. An intraperitoneal injection of extended-release recombinant bovine growth hormone (rbGH, Posilac®) was used in gilthead sea bream fingerlings and juveniles to analyse the metabolic response of liver and red and white muscles by enzymatic, isotopic and proteomic analyses. GH-induced lipolysis and glycogenolysis were reflected in liver composition, and metabolic and redox enzymes reported higher lipid use and lower protein oxidation. In white and red muscle reserves, rBGH increased glycogen while reducing lipid. The isotopic analysis of muscles showed a decrease in the recycling of proteins and a greater recycling of lipids and glycogen in the rBGH groups, which favoured a protein sparing effect. The protein synthesis capacity (RNA/protein) of white muscle increased, while cytochrome-c-oxidase (COX) protein expression decreased in rBGH group. Proteomic analysis of white muscle revealed only downregulation of 8 proteins, related to carbohydrate metabolic processes. The global results corroborated that GH acted by saving dietary proteins for muscle growth mainly by promoting the use of lipids as energy in the muscles of the gilthead sea bream. There was a fuel switch from carbohydrates to lipids with compensatory changes in antioxidant pathways that overall resulted in enhanced somatic growth.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hormônio do Crescimento/administração & dosagem , Dourada/crescimento & desenvolvimento , Somatomedinas/metabolismo , Animais , Bovinos , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glicogênio/metabolismo , Glicogenólise/efeitos dos fármacos , Hormônio do Crescimento/genética , Hormônio do Crescimento/farmacologia , Marcação por Isótopo , Lipólise/efeitos dos fármacos , Proteômica , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Dourada/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-34119649

RESUMO

The use of probiotics has been recently considered a novel therapeutic strategy to prevent pathologies such as obesity; however, the specific mechanisms of action by which probiotics exert their beneficial effects on metabolic health remain unclear. The aim of the present study was to investigate the short-term effects of a probiotic Lactobacillus rhamnosus supplementation (PROB) on appetite regulation, growth-related markers, and microbiota diversity in zebrafish (Danio rerio) larvae, compared to a group subjected to a constant darkness photoperiod (DARK), as well as to evaluate the effects of both treatments on melatonin receptors' expression. After a 24 h treatment, both PROB and DARK conditions caused a significant increase in leptin a expression. Moreover, mRNA abundances of leptin b and proopiomelanocortin a were elevated in the PROB group, and DARK showed a similar tendency, supporting a negative regulation of appetite markers by the treatments. Moreover, both PROB and DARK also enhanced the abundances of melatonin receptors transcript (melatonin receptor 1 ba and bb) and protein (melatonin receptor 1) suggesting a potential involvement of melatonin in mediating these effects. Nevertheless, treatments did not exhibit a significant effect on the expression of most of the growth hormone/insulin-like growth factor axis genes evaluated. Finally, only the DARK condition significantly modulated gut microbiota diversity at such short time, altogether highlighting the rapid effects of this probiotic on modulating appetite regulatory and melatonin receptors' expression, without a concomitant variation of gut microbiota.


Assuntos
Apetite/fisiologia , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus/química , Larva/metabolismo , Fotoperíodo , Probióticos/farmacologia , Receptores de Melatonina/metabolismo , Animais , Apetite/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Melatonina/metabolismo , Receptores de Melatonina/genética , Peixe-Zebra
12.
Animals (Basel) ; 11(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494202

RESUMO

The upward trend of seawater temperature has encouraged improving the knowledge of its consequences on fish, considering also the development of diets including vegetable ingredients as an approach to achieve a more sustainable aquaculture. This study aims to determine the effects on musculoskeletal growth of: (1) a high-water temperature of 28 °C (versus 21 °C) in gilthead sea bream juveniles (Sparus aurata) fed with a diet rich in palm oil and, (2) feeding the fish reared at 28 °C with two other diets containing rapeseed oil or an equilibrated combination of both vegetable oils. Somatic parameters and mRNA levels of growth hormone-insulin-like growth factors (GH-IGFs) axis-, osteogenic-, myogenic-, lipid metabolism- and oxidative stress-related genes in vertebra bone and/or white muscle are analyzed. Overall, the data indicate that high-water rearing temperature in this species leads to different adjustments through modulating the gene expression of members of the GH-IGFs axis (down-regulating igf-1, its receptors, and binding proteins) and also, to bone turnover (reducing the resorption-activity genes cathepsin K (ctsk) and matrix metalloproteinase-9 (mmp9)) to achieve harmonic musculoskeletal growth. Moreover, the combination of palm and rapeseed oils seems to be the most beneficial at high-water rearing temperature for both balanced somatic growth and muscular fatty acid uptake and oxidation.

13.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824312

RESUMO

Soybeans are one of the most used alternative dietary ingredients in aquafeeds. However, they contain phytoestrogens like genistein (GE), which can have an impact on fish metabolism and health. This study aimed to investigate the in vitro and in vivo effects of GE on lipid metabolism, apoptosis, and autophagy in rainbow trout (Oncorhynchus mykiss). Primary cultured preadipocytes were incubated with GE at different concentrations, 10 or 100 µM, and 1 µM 17ß-estradiol (E2). Furthermore, juveniles received an intraperitoneal injection of GE at 5 or 50 µg/g body weight, or E2 at 5 µg/g. In vitro, GE 100 µM increased lipid accumulation and reduced cell viability, apparently involving an autophagic process, indicated by the higher LC3-II protein levels, and higher lc3b and cathepsin d transcript levels achieved after GE 10 µM. In vivo, GE 50 µg/g upregulated the gene expression of fatty acid synthase (fas) and glyceraldehyde-3-phosphate dehydrogenase in adipose tissue, suggesting enhanced lipogenesis, whereas it increased hormone-sensitive lipase in liver, indicating a lipolytic response. Besides, autophagy-related genes increased in the tissues analyzed mainly after GE 50 µg/g treatment. Overall, these findings suggest that an elevated GE administration could lead to impaired adipocyte viability and lipid metabolism dysregulation in rainbow trout.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia , Autofagia , Genisteína/farmacologia , Fitoestrógenos/farmacologia , Truta/metabolismo , Adipócitos/metabolismo , Animais , Catepsina D/genética , Catepsina D/metabolismo , Sobrevivência Celular , Células Cultivadas , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Genisteína/toxicidade , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Metabolismo dos Lipídeos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fitoestrógenos/toxicidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-32711163

RESUMO

Leptin, ghrelin, and insulin influence lipid metabolism and thus can directly affect adipose tissue characteristics, modulating the organoleptic quality of aquaculture fish. The present study explored gilthead seabream (Sparus aurata) cultured preadipocytes development, and the regulation of adipogenesis by those three hormones. Preadipocytes presented a fibroblast-like phenotype during the proliferation phase that changed to round-shaped with an enlarged cytoplasm filled with lipid droplets after complete differentiation, confirming the characteristics of mature adipocytes. peroxisome proliferator-activated receptor-γ (pparγ) expression was higher at the beginning of the culture, while fatty acid synthase and 3-hydroxyacyl-CoA dehydrogenase gradually increased with cell maturation. The expression of lipoprotein lipase-like, lysosomal acid lipase (lipa), fatty acid translocase/cluster of differentiation-36 (cd36), and leptin receptor (lepr) were not affected during cell culture development; and undetectable expression levels were observed for leptin. Concerning regulation, leptin inhibited lipid accumulation significantly reducing pparγ and cd36 gene expression, both in early differentiating and mature adipocytes, while ghrelin decreased the expression of pparγ in the early differentiating phase but did not reduce intracellular lipid content significantly. Additional insulin past the onset of adipogenesis did not affect lipid accumulation either. In conclusion, at present culture conditions leptin has an anti-adipogenic function in differentiating preadipocytes of gilthead seabream and continues exerting this role in mature adipocytes, while ghrelin and insulin do not seem to influence adipogenesis progression. A better understanding of leptin, ghrelin, and insulin impact on the adipogenic process could help in the prevention of fat accumulation, improving aquaculture fish production and quality.


Assuntos
Adipogenia/fisiologia , Grelina/fisiologia , Insulina/fisiologia , Leptina/fisiologia , Dourada/fisiologia , Adipócitos/citologia , Animais , Aquicultura , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Hidrólise , Técnicas In Vitro , Metabolismo dos Lipídeos , Microscopia de Contraste de Fase , Receptores para Leptina/metabolismo
15.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120851

RESUMO

Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Due to the increasing use of vegetable oils (VO), their proportion in diets has lowered, affecting lipid metabolism and fillet composition. Rainbow trout cultured preadipocytes were treated with representative FA found in fish oils (EPA and DHA) or VO (linoleic, LA and alpha-linolenic, ALA acids), while EPA and LA were also orally administered, to evaluate their effects on adipogenesis and lipid metabolism. In vitro, all FA increased lipid internalization, with ALA producing the highest effect, together with upregulating the FA transporter fatp1. In vivo, EPA or LA increased peroxisome proliferator-activated receptors ppara and pparb transcripts abundance in adipose tissue, suggesting elevated ß-oxidation, contrary to the results obtained in liver. Furthermore, the increased expression of FA synthase (fas) and the FA translocase/cluster of differentiation (cd36) in adipose tissue indicated an enhanced uptake of lipids and lipogenesis de novo, whereas stable or low hepatic expression of genes involved in lipid transport and turnover was found. Thus, fish showed a similar tissue metabolic response to the short-term availability of EPA or LA in vivo, while in vitro VO-derived FA demonstrated greater potential inducing fat accumulation.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Oncorhynchus mykiss/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Células Cultivadas , Dieta , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Fígado/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Plasma/efeitos dos fármacos , Plasma/metabolismo , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/farmacologia
16.
Microb Ecol ; 79(4): 933-946, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31820072

RESUMO

Gut microbiota plays a fundamental role in maintaining host's health by controlling a wide range of physiological processes. Administration of probiotics and manipulation of photoperiod have been suggested as modulators of microbial composition and are currently undergoing an extensive research in aquaculture as a way to improve health and quality of harvested fish. However, our understanding regarding their effects on physiological processes is still limited. In the present study we investigated whether manipulation of photoperiod and/or probiotic administration was able to alter microbial composition in zebrafish larvae at hatching stage. Our findings show that probiotic does not elicit effects while photoperiod manipulation has a significant impact on microbiota composition. Moreover, we successfully predicted lipid biosynthesis and apoptosis to be modulated by microbial communities undergoing continuous darkness. Interestingly, expression levels of caspase 3 gene (casp3) and lipid-related genes (hnf4a, npc1l1, pparγ, srebf1, agpat4 and fitm2) were found to be significantly overexpressed in dark-exposed larvae, suggesting an increase in the occurrence of apoptotic processes and a lipid metabolism impairment, respectively (p < 0.05). Our results provide the evidence that microbial communities in zebrafish at early life stages are not modulated by a short administration of probiotics and highlight the significant effect that dark photoperiod elicits on zebrafish microbiota and potentially on health.


Assuntos
Apoptose , Microbioma Gastrointestinal/fisiologia , Metabolismo dos Lipídeos , Fotoperíodo , Transcriptoma , Peixe-Zebra/microbiologia , Animais , Ritmo Circadiano , Proteínas de Peixes/metabolismo , Probióticos/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real , Peixe-Zebra/fisiologia
18.
J Fish Dis ; 42(8): 1169-1180, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31180144

RESUMO

The incidence of skeletal anomalies in reared fish has been translated for years in important economic losses for the aquaculture industry. In the present study, we have analysed the gene expression of extracellular matrix components and transcription factors involved in bone development in gilthead sea bream presenting different skeletal anomalies: lordosis (LD), lordosis-scoliosis-kyphosis (LSK) or opercular, dental or jaw malformations in comparison with control (CT) specimens. Results showed a possible link between the presence of LD and LSK and the significant downregulation of genes involved in osteoblasts' maturation and matrix mineralization (collagen type 1-alpha, osteopontin, osteocalcin, matrix Gla protein and tissue non-specific alkaline phosphatase), as well as in bone resorption (cathepsin K and matrix metalloproteinase 9) compared to CT animals. Contrarily, the key osteogenic transcription factor runx2 was upregulated in the malformed vertebra suggesting impaired determination of mesenchymal stem cells towards the osteoblastic lineage. Despite the gene expression patterns of the other malformed structures were not affected in comparison with CT fish, the results of the present study may contribute in the long term to identify potential candidate gene profiles associated with column deformities that may help reducing the incidence of appearance of skeletal anomalies in this important aquaculture species.


Assuntos
Matriz Extracelular/patologia , Doenças dos Peixes/genética , Expressão Gênica , Anormalidades Musculoesqueléticas/veterinária , Dourada/genética , Animais , Desenvolvimento Ósseo/genética , Doenças dos Peixes/patologia , Regulação da Expressão Gênica no Desenvolvimento , Anormalidades Musculoesqueléticas/genética , Anormalidades Musculoesqueléticas/patologia , Dourada/anormalidades
19.
Artigo em Inglês | MEDLINE | ID: mdl-30967839

RESUMO

World population is expected to increase to approximately 9 thousand million people by 2050 with a consequent food security decline. Besides, climate change is a major challenge that humanity is facing, with a predicted rise in mean sea surface temperature of more than 2°C during this century. This study aims to determine whether a rearing temperature of 19, 24, or 28°C may influence musculoskeletal development and muscle lipid metabolism in gilthead sea bream juveniles. The expression of growth hormone (GH)/insulin-like growth factors (IGFs) system-, osteogenic-, myogenic-, and lipid metabolism-related genes in bone and/or white muscle of treated fish, and the in vitro viability, mineralization, and osteogenic genes expression in primary cultured cells derived from bone of the same fish were analyzed. The highest temperature significantly down-regulated igf-1, igf-2, the receptor igf-1ra, and the binding proteins igfbp-4 and igfbp-5b in bone, and in muscle, igf-1 and igf-1ra, suggesting impaired musculoskeletal development. Concerning myogenic factors expression, contrary responses were observed, since the increase to 24°C significantly down-regulated myod1 and mrf4, while at 28°C myod2 and myogenin were significantly up-regulated. Moreover, in the muscle tissue, the expression of the fatty acid transporters cd36 and fabp11, and the lipases lipa and lpl-lk resulted significantly increased at elevated temperatures, whereas ß-oxidation markers cpt1a and cpt1b were significantly reduced. Regarding the primary cultured bone-derived cells, a significant up-regulation of the extracellular matrix proteins on, op, and ocn expression was found with increased temperatures, together with a gradual decrease in mineralization along with fish rearing temperature. Overall, these results suggest that increasing water temperature in this species appears to induce unfavorable growth and development of bone and muscle, through modulating the expression of different members of the GH/IGFs axis, myogenic and osteogenic genes, while accelerating the utilization of lipids as an energy source, although less efficiently than at optimal temperatures.

20.
PLoS One ; 14(4): e0215926, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017945

RESUMO

Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, thus they have a great nutritional value for human health. In this study, the adipogenic potential of fatty acids commonly found in fish oil (EPA and DHA) and vegetable oils (linoleic (LA) and alpha-linolenic (ALA) acids), was evaluated in bone-derived mesenchymal stem cells (MSCs) from gilthead sea bream. At a morphological level, cells adopted a round shape upon all treatments, losing their fibroblastic form and increasing lipid accumulation, especially in the presence of the n-6 PUFA, LA. The mRNA levels of the key transcription factor of osteogenesis, runx2 significantly diminished and those of relevant osteogenic genes remained stable after incubation with all fatty acids, suggesting that the osteogenic process might be compromised. On the other hand, transcript levels of the main adipogenesis-inducer factor, pparg increased in response to EPA. Nevertheless, the specific PPARγ antagonist T0070907 appeared to suppress the effects being caused by EPA over adipogenesis. Moreover, LA, ALA and their combinations, significantly up-regulated the fatty acid transporter and binding protein, fatp1 and fabp11, supporting the elevated lipid content found in the cells treated with those fatty acids. Overall, this study has demonstrated that fatty acids favor lipid storage in gilthead sea bream bone-derived MSCs inducing their fate into the adipogenic versus the osteogenic lineage. This process seems to be promoted via different pathways depending on the fatty acid source, being vegetable oils-derived fatty acids more prone to induce unhealthier metabolic phenotypes.


Assuntos
Adipogenia/efeitos dos fármacos , Osso e Ossos/citologia , Ácidos Graxos/farmacologia , Óleos de Peixe/farmacologia , Células-Tronco Mesenquimais/citologia , Óleos de Plantas/farmacologia , Dourada/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...