Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 112(3): 790-801, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699930

RESUMO

PURPOSE: The tumor microenvironment (TME) can severely impair immunotherapy efficacy by repressing the immune system. In a multiple myeloma (MM) murine model, we investigated the impact of targeted alpha particle therapy (TAT) on the immune TME. TAT was combined with an adoptive cell transfer of CD8 T cells (ACT), and the mechanisms of action of this combination were assessed at the tumor site. METHODS AND MATERIALS: This combination treatment was conducted in a syngeneic MM murine model grafted subcutaneously. TAT was delivered by intravenous injection of a bismuth-213 radiolabeled anti-CD138 antibody. To strengthen antitumor immune response, TAT was combined with an ACT of tumor-specific CD8+ OT-1 T-cells. The tumors were collected and the immune TME analyzed by flow cytometry, immunohistochemistry, and ex vivo T-cell motility assay on tumor slices. The chemokine and cytokine productions were also assessed by quantitative reverse transcription polymerase chain reaction. RESULTS: Tumor-specific CD8+ OT-1 T cells infiltrated the tumors after ACT. However, only treatment with TAT resulted in regulatory CD4 T-cell drop and transient increased production of interleukin-2, CCL-5, and interferon-γ within the tumor. Moreover, OT-1 T-cell recruitment and motility were increased on tumor slices from TAT-treated mice, as observed via ex vivo time lapse, contributing to a more homogeneous distribution of OT-1 T cells in the tumor. Subsequently, the tumor cells increased PD-L1 expression, antitumor cytokine production decreased, and OT-1 T-cells overexpressed exhaustion markers, suggesting an exhaustion of the immune response. CONCLUSION: Combining TAT and ACT seems to transiently remodel the cold TME, improving ACT efficiency. The immune response then leads to the establishment of other tumor cell resistance mechanisms.


Assuntos
Partículas alfa , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imunoterapia/métodos , Camundongos
2.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809167

RESUMO

PD-L1 (programmed death-ligand 1, B7-H1, CD274), the ligand for PD-1 inhibitory receptor, is expressed on various tumors, and its expression is correlated with a poor prognosis in melanoma. Anti-PD-L1 mAbs have been developed along with anti-CTLA-4 and anti-PD-1 antibodies for immune checkpoint inhibitor (ICI) therapy, and anti-PD-1 mAbs are now used as first line treatment in melanoma. However, many patients do not respond to ICI therapies, and therefore new treatment alternatives should be developed. Because of its expression on the tumor cells and on immunosuppressive cells within the tumor microenvironment, PD-L1 represents an interesting target for targeted alpha-particle therapy (TAT). We developed a TAT approach in a human melanoma xenograft model that stably expresses PD-L1 using a 213Bi-anti-human-PD-L1 mAb. Unlike treatment with unlabeled anti-human-PD-L1 mAb, TAT targeting PD-L1 significantly delayed melanoma tumor growth and improved animal survival. A slight decrease in platelets was observed, but no toxicity on red blood cells, bone marrow, liver or kidney was induced. Anti-tumor efficacy was associated with specific tumor targeting since no therapeutic effect was observed in animals bearing PD-L1 negative melanoma tumors. This study demonstrates that anti-PD-L1 antibodies may be used efficiently for TAT treatment in melanoma.

3.
J Immunol ; 205(3): 608-618, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32580933

RESUMO

Dendritic cells (DCs) are professional APCs, which sample Ags in the periphery and migrate to the lymph node where they activate T cells. DCs can also present native Ag to B cells through interactions observed both in vitro and in vivo. However, the mechanisms of Ag transfer and B cell activation by DCs remain incompletely understood. In this study, we report that murine DCs are an important cell transporter of Ag from the periphery to the lymph node B cell zone and also potent inducers of B cell activation both in vivo and in vitro. Importantly, we highlight a novel extracellular mechanism of B cell activation by DCs. In this study, we demonstrate that Ag released upon DC regurgitation is sufficient to efficiently induce early B cell activation, which is BCR driven and mechanistically dependent on the nuclear accumulation of the transcription factor NF-κB/cRel. Thus, our study provides new mechanistic insights into Ag delivery and B cell activation modalities by DCs and a promising approach for targeting NF-κB/cRel pathway to modulate the DC-elicited B cell responses.


Assuntos
Apresentação de Antígeno , Antígenos/imunologia , Linfócitos B/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária , NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-rel/imunologia , Transdução de Sinais/imunologia , Animais , Antígenos/genética , Feminino , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-rel/genética
4.
Front Med (Lausanne) ; 7: 34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118018

RESUMO

The impressive development of cancer immunotherapy in the last few years originates from a more precise understanding of control mechanisms in the immune system leading to the discovery of new targets and new therapeutic tools. Since different stages of disease progression elicit different local and systemic inflammatory responses, the ability to longitudinally interrogate the migration and expansion of immune cells throughout the whole body will greatly facilitate disease characterization and guide selection of appropriate treatment regiments. While using radiolabeled white blood cells to detect inflammatory lesions has been a classical nuclear medicine technique for years, new non-invasive methods for monitoring the distribution and migration of biologically active cells in living organisms have emerged. They are designed to improve detection sensitivity and allow for a better preservation of cell activity and integrity. These methods include the monitoring of therapeutic cells but also of all cells related to a specific disease or therapeutic approach. Labeling of therapeutic cells for imaging may be performed in vitro, with some limitations on sensitivity and duration of observation. Alternatively, in vivo cell tracking may be performed by genetically engineering cells or mice so that may be revealed through imaging. In addition, SPECT or PET imaging based on monoclonal antibodies has been used to detect tumors in the human body for years. They may be used to detect and quantify the presence of specific cells within cancer lesions. These methods have been the object of several recent reviews that have concentrated on technical aspects, stressing the differences between direct and indirect labeling. They are briefly described here by distinguishing ex vivo (labeling cells with paramagnetic, radioactive, or fluorescent tracers) and in vivo (in vivo capture of injected radioactive, fluorescent or luminescent tracers, or by using labeled antibodies, ligands, or pre-targeted clickable substrates) imaging methods. This review focuses on cell tracking in specific therapeutic applications, namely cell therapy, and particularly CAR (Chimeric Antigen Receptor) T-cell therapy, which is a fast-growing research field with various therapeutic indications. The potential impact of imaging on the progress of these new therapeutic modalities is discussed.

5.
J Antimicrob Chemother ; 72(3): 850-854, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999055

RESUMO

Background: Ultra-deep sequencing (UDS) allows detection of minority resistant variants (MRVs) with a threshold of 1% and could be useful to identify variants harbouring single or multiple drug-resistance mutations (DRMs). Objectives: We analysed the integrase gene region longitudinally using UDS in an HIV-1-infected child rapidly failing a raltegravir-based regimen. Methods: Longitudinal plasma samples at baseline and weeks 4, 8, 13, 17 and 39 were obtained, as well as the mother's baseline plasma sample. Sanger sequencing and UDS were performed on the integrase gene using Roche 454 GS-Junior. A bioinformatic workflow was developed to identify the major DRMs, accessory mutations and the linkage between mutations. Results: In Sanger sequencing and UDS, no MRV in the integrase gene was detected at baseline in either the mother or the child. The major DRM N155H conferring resistance to raltegravir and elvitegravir was detected in 4% of the sequences by week 4 using UDS, whereas it was not detected by Sanger sequencing. The double mutant E92Q + N155H, conferring resistance to the entire integrase inhibitor class, including dolutegravir, emerged at week 8 (16%) and became rapidly dominant (57% by week 13). At the last timepoint under raltegravir (week 17), Y143R emerged, leading to different resistance mutation patterns: single mutants N155H (47%) and Y143R (24%) and double mutants E92Q + N155H (13%), Y143R + N155H (2%) and E92Q + Y143R (2%). The polymorphic substitution M50I was preferentially selected on resistant variants, especially on E92Q + N155H variants. Conclusions: This case study illustrates the usefulness of UDS in detecting early MRVs and determining the dynamics of selected HIV-1 variants in longitudinal analysis.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/virologia , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/genética , HIV-1/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Quinolonas/farmacologia , Criança , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/administração & dosagem , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/enzimologia , HIV-1/genética , HIV-1/isolamento & purificação , Compostos Heterocíclicos com 3 Anéis/farmacologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Mutação , Oxazinas , Piperazinas , Piridonas , Pirrolidinonas/farmacologia , Pirrolidinonas/uso terapêutico , Quinolonas/administração & dosagem , Quinolonas/efeitos adversos , Quinolonas/uso terapêutico , RNA Viral/sangue , Raltegravir Potássico/farmacologia , Raltegravir Potássico/uso terapêutico , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...