Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38777989

RESUMO

To effectively process the most relevant information, the brain anticipates the optimal timing for allocating attentional resources. Behavior can be optimized by automatically aligning attention with external rhythmic structures, whether visual or auditory. Although the auditory modality is known for its efficacy in representing temporal information, the current body of research has not conclusively determined whether visual or auditory rhythmic presentations have a definitive advantage in entraining temporal attention. The present study directly examined the effects of auditory and visual rhythmic cues on the discrimination of visual targets in Experiment 1 and on auditory targets in Experiment 2. Additionally, the role of endogenous spatial attention was also considered. When and where the target was the most likely to occur were cued by unimodal (visual or auditory) and bimodal (audiovisual) signals. A sequence of salient events was employed to elicit rhythm-based temporal expectations and a symbolic predictive cue served to orient spatial attention. The results suggest a superiority of auditory over visual rhythms, irrespective of spatial attention, whether the spatial cue and rhythm converge or not (unimodal or bimodal), and regardless of the target modality (visual or auditory). These findings are discussed in terms of a modality-specific rhythmic orienting, while considering a single, supramodal system operating in a top-down manner for endogenous spatial attention.

2.
Psychon Bull Rev ; 30(6): 2030-2048, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37407793

RESUMO

While there is ample evidence for the ability to selectively attend to where in space and when in time a relevant event might occur, it remains poorly understood whether spatial and temporal attention operate independently or interactively to optimize behavior. To elucidate this important issue, we provide a narrative review of the literature investigating the relationship between the two. The studies were organized based on the attentional manipulation employed (endogenous vs. exogenous) and the type of task (detection vs. discrimination). Although the reviewed findings depict a complex scenario, three aspects appear particularly important in promoting independent or interactive effects of spatial and temporal attention: task demands, attentional manipulation, and their combination. Overall, the present review provides key insights into the relationship between spatial and temporal attention and identifies some critical gaps that need to be addressed by future research.


Assuntos
Sinais (Psicologia) , Percepção do Tempo , Humanos , Orientação , Tempo de Reação , Percepção Espacial
3.
Neuropsychologia ; 184: 108561, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031951

RESUMO

Adaptive behavior requires the ability to orient attention to the moment in time at which a relevant event is likely to occur. Temporal orienting of attention has been consistently associated with activation of the left intraparietal sulcus (IPS) in prior fMRI studies. However, a direct test of its causal involvement in temporal orienting is still lacking. The present study tackled this issue by transiently perturbing left IPS activity with either online (Experiment 1) or offline (Experiment 2) transcranial magnetic stimulation (TMS). In both experiments, participants performed a temporal orienting task, alternating between blocks in which a temporal cue predicted when a subsequent target would appear and blocks in which a neutral cue provided no information about target timing. In Experiment 1 we used an online TMS protocol, aiming to interfere specifically with cue-related temporal processes, whereas in Experiment 2 we employed an offline protocol whereby participants performed the temporal orienting task before and after receiving TMS. The right IPS and/or the vertex were stimulated as active control regions. While results replicated the canonical pattern of temporal orienting effects on reaction time, with faster responses for temporal than neutral trials, these effects were not modulated by TMS over the left IPS (as compared to the right IPS and/or vertex regions) regardless of the online or offline protocol used. Overall, these findings challenge the causal role of the left IPS in temporal orienting of attention inviting further research on its underlying neural substrates.


Assuntos
Mapeamento Encefálico , Estimulação Magnética Transcraniana , Humanos , Mapeamento Encefálico/métodos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Tempo de Reação/fisiologia , Imageamento por Ressonância Magnética
4.
PLoS One ; 17(3): e0264999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294473

RESUMO

This study aimed to test two common explanations for the general finding of age-related changes in the performance of timing tasks within the millisecond-to-second range intervals. The first explanation is that older adults have a real difficulty in temporal processing as compared to younger adults. The second explanation is that older adults perform poorly on timing tasks because of their reduced cognitive control functions. These explanations have been mostly contrasted in explicit timing tasks that overtly require participants to process interval durations. Fewer studies have instead focused on implicit timing tasks, where no explicit instructions to process time are provided. Moreover, the investigation of both explicit and implicit timing in older adults has been restricted so far to healthy older participants. Here, a large sample (N = 85) comprising not only healthy but also pathological older adults completed explicit (time bisection) and implicit (foreperiod) timing tasks within a single session. Participants' age and cognitive decline, measured with the Mini-Mental State Examination (MMSE), were used as continuous variables to explain performance on explicit and implicit timing tasks. Results for the explicit timing task showed a flatter psychometric curve with increasing age or decreasing MMSE scores, pointing to a deficit at the level of cognitive control functions rather than of temporal processing. By contrast, for the implicit timing task, a decrease in the MMSE scores was associated with a reduced foreperiod effect, an index of implicit time processing. Overall, these findings extend previous studies on explicit and implicit timing in healthy aged samples by dissociating between age and cognitive decline (in the normal-to-pathological continuum) in older adults.


Assuntos
Disfunção Cognitiva , Percepção do Tempo , Idoso , Humanos
5.
Neuropsychologia ; 169: 108187, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35218790

RESUMO

Though the assessment of cognitive functions is proven to be a reliable prognostic indicator in patients with brain tumors, some of these functions, such as cognitive control, are still rarely investigated. The objective of this study was to examine proactive and reactive control functions in patients with focal brain tumors and to identify lesioned brain areas more at "risk" for developing impairment of these functions. To this end, a group of twenty-two patients, candidate to surgery, were tested with an AX-CPT task and a Stroop task, along with a clinical neuropsychological assessment, and their performance was compared to that of a well-matched healthy control group. Although overall accuracy and response times were similar for patients and control groups, the patient group failed more on the BX trials of the AX-CPT task and on the incongruent trials of the Stroop task, specifically. Behavioral results were associated with the damaged brain areas, mostly distributed in right frontal regions, by means of a lesion-symptom mapping multivariate approach. This analysis showed that a white matter cluster in the right prefrontal area was associated with lower d'-context values on the AX-CPT, which reflected the fact that these patients rely more on later information (reactive processes) to respond to unexpected and conflicting stimuli, than on earlier contextual cues (proactive processes). Taken together, these results suggest that patients with brain tumors present an imbalance between proactive and reactive control strategies in high interfering conditions, in association with right prefrontal white matter lesions.


Assuntos
Neoplasias Encefálicas , Disfunção Cognitiva , Mapeamento Encefálico , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Cognição/fisiologia , Humanos , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia
6.
Brain Struct Funct ; 227(2): 655-672, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34106305

RESUMO

Homotopic functional connectivity reflects the degree of synchrony in spontaneous activity between homologous voxels in the two hemispheres. Previous studies have associated increased brain homotopy and decreased white matter integrity with performance decrements on different cognitive tasks across the life-span. Here, we correlated functional homotopy, both at the whole-brain level and specifically in fronto-parietal network nodes, with task-switching performance in young adults. Cue-to-target intervals (CTI: 300 vs. 1200 ms) were manipulated on a trial-by-trial basis to modulate cognitive demands and strategic control. We found that mixing costs, a measure of task-set maintenance and monitoring, were significantly correlated to homotopy in different nodes of the fronto-parietal network depending on CTI. In particular, mixing costs for short CTI trials were smaller with lower homotopy in the superior frontal gyrus, whereas mixing costs for long CTI trials were smaller with lower homotopy in the supramarginal gyrus. These results were specific to the fronto-parietal network, as similar voxel-wise analyses within a control language network did not yield significant correlations with behavior. These findings extend previous literature on the relationship between homotopy and cognitive performance to task-switching, and show a dissociable role of homotopy in different fronto-parietal nodes depending on task demands.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal , Adulto Jovem
7.
Behav Brain Res ; 410: 113354, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33989726

RESUMO

Performance on timing tasks changes with age. Whether these changes reflect a real "clock" problem due to aging or a secondary effect of the reduced cognitive resources of older adults is still an unsettled question. Research on processing of time in aged populations marked by severe mnemonic and/or attentional deficits, such as patients with Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI), may help elucidate the role of cognitive resources in age-related temporal distortions. To this end, we conducted a systematic review and meta-analysis of timing studies in AD and MCI patients; both prospective and retrospective timing tasks were considered and analysed separately. As concerns prospective timing, a first random-effect model showed a medium overall effect of neurodegeneration on timing performance. When considering the role of moderator variables(i.e., neurodegenerative condition, type of measure, participants' age and years of education, interval length, and type of timing task), mean score appeared to be a less sensitive measure than accuracy and variability, and the observed temporal impairment was smaller in older samples. In addition, AD patients only exhibited medium-to-high impairment on prospective timing tasks, whereas MCI patients did not significantly differ from controls. However, assuming a mean age of 70 years old and absolute error as dependent variable, a second fitted meta-regression model predicted a significant outcome also for MCI patients. Concerning retrospective timing, a significant but small effect of neurodegeneration was observed for retrospective judgments. None of the moderators, however, explained between-studies variability. Collectively, our findings highlight a clear deficit in prospective timing for AD patients and underscore several issues that future work should carefully consider to better investigate the effect of MCI on prospective temporal judgements. Results from retrospective timing also point to a possible impairment of retrospective judgments in neurodegenerative conditions, albeit more studies are needed to substantiate this finding.


Assuntos
Doença de Alzheimer/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Percepção do Tempo/fisiologia , Humanos
8.
Neuroimage ; 231: 117867, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592246

RESUMO

The brain predicts the timing of forthcoming events to optimize responses to them. Temporal predictions have been formalized in terms of the hazard function, which integrates prior beliefs on the likely timing of stimulus occurrence with information conveyed by the passage of time. However, how the human brain updates prior temporal beliefs is still elusive. Here we investigated electroencephalographic (EEG) signatures associated with Bayes-optimal updating of temporal beliefs. Given that updating usually occurs in response to surprising events, we sought to disentangle EEG correlates of updating from those associated with surprise. Twenty-six participants performed a temporal foreperiod task, which comprised a subset of surprising events not eliciting updating. EEG data were analyzed through a regression-based massive approach in the electrode and source space. Distinct late positive, centro-parietally distributed, event-related potentials (ERPs) were associated with surprise and belief updating in the electrode space. While surprise modulated the commonly observed P3b, updating was associated with a later and more sustained P3b-like waveform deflection. Results from source analyses revealed that neural encoding of surprise comprises neural activity in the cingulo-opercular network (CON) and parietal regions. These data provide evidence that temporal predictions are computed in a Bayesian manner, and that this is reflected in P3 modulations, akin to other cognitive domains. Overall, our study revealed that analyzing P3 modulations provides an important window into the Bayesian brain. Data and scripts are shared on OSF: https://osf.io/ckqa5/.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Adulto , Teorema de Bayes , Potenciais Evocados P300/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
9.
Neuroimage ; 227: 117655, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333318

RESUMO

Different cortical regions respond with distinct rhythmic patterns of neural oscillations to Transcranial Magnetic Stimulation (TMS). We investigated natural frequencies induced by TMS in left and right homologous dorsolateral prefrontal cortices (DLPFC) and related hemispheric differences. In 12 healthy young adults, single-pulse TMS was delivered in different blocks close to F3 and F4 channels to target left and right DLPFC. An occipital site near PO3 was stimulated as control. TMS-related spectral perturbation analyses were performed on recorded EEG data. A widespread unspecific increase in theta power was observed for all stimulation sites. However, occipital TMS induced greater alpha activity and a 10.58 Hz natural frequency, while TMS over the left and right DLPFC resulted in similar beta band modulations and a natural frequency of 18.77 and 18.5 Hz, respectively. In particular, TMS-related specific increase in beta activity was stronger for the right than the left DLPFC. The right DLPFC is more specifically tuned to its natural beta frequency when it is directly stimulated by TMS than with TMS over the left counterpart (or a posterior region), while the left DLPFC increases its beta activity more similarly irrespective of whether it is directly stimulated or through right homologous stimulation. These results yield important implications for both basic neuroscience research on inter-hemispheric prefrontal interactions and clinical applications.


Assuntos
Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
10.
Brain Sci ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374355

RESUMO

BACKGROUND: Spino-bulbar muscular atrophy is a rare genetic X-linked disease caused by testosterone insensitivity. An inverse correlation has been described between testosterone levels and empathic responses. The present study explored the profile of neural empathic responding in spino-bulbar muscular atrophy patients. METHODS: Eighteen patients with spino-bulbar muscular atrophy and eighteen healthy male controls were enrolled in the study. Their event-related potentials were recorded during an "Empathy Task" designed to distinguish neural responses linked with experience-sharing (early response) and mentalizing (late response) components of empathy. The task involved the presentation of contextual information (painful vs. neutral sentences) and facial expressions (painful vs. neutral). An explicit dispositional empathy-related questionnaire was also administered to all participants, who were screened via neuropsychological battery tests that did not reveal potential cognitive deficits. Due to electrophysiological artefacts, data from 12 patients and 17 controls were finally included in the analyses. RESULTS: Although patients and controls did not differ in terms of dispositional, explicit empathic self-ratings, notably conservative event-related potentials analyses (i.e., spatio-temporal permutation cluster analyses) showed a significantly greater experience-sharing neural response in patients compared to healthy controls in the Empathy-task when both contextual information and facial expressions were painful. CONCLUSION: The present study contributes to the characterization of the psychological profile of patients with spino-bulbar muscular atrophy, highlighting the peculiarities in enhanced neural responses underlying empathic reactions.

11.
Psychophysiology ; 57(11): e13642, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32720385

RESUMO

Task-switching paradigms, which involve task repetitions and between-task switches, have long been used as a benchmark of cognitive control processes. When mixed and single-task blocks are presented, two types of costs usually occur: the switch cost, measured by contrasting performance on switch and repeat trials during the mixed-task blocks, and the mixing cost, calculated as the performance difference between the all-repeat trials from the single-task blocks and the repeat trials from the mixed-task blocks. Both costs can be mitigated by informational cues that signal the upcoming task switch beforehand. Recent electroencephalographic studies have started unveiling the brain oscillatory activity underlying the switch cost during the preparatory cue-target interval, thus, targeting proactive control processes. Less attention has instead been paid to the mixing cost and, importantly, to the oscillatory dynamics involved in switch and mixing costs during reactive control. To fill this gap, here, we analyzed the time-frequency data obtained during a task-switching paradigm wherein the simultaneous presentation of task cues and targets increased the need for reactive control. Results showed that while alpha and beta bands were modulated by switch and mixing costs in a similar gradual fashion, with greater suppression going from switch to repeat and all-repeat trials, theta power was sensitive to the switch cost with increased power for switch than repeat trials. Together, our findings join previous studies underlining the importance of theta, alpha and beta oscillations in task-switching and extend them by depicting the oscillations involved in switch and mixing costs during reactive control processes.


Assuntos
Ondas Encefálicas/fisiologia , Potenciais Evocados/fisiologia , Função Executiva/fisiologia , Neuroimagem Funcional , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
12.
Cogn Affect Behav Neurosci ; 20(2): 294-308, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31989458

RESUMO

Intrinsic brain dynamics may play an important role in explaining interindividual variability in executive functions. In the present electroencephalography (EEG) study, we focused on the brain lateralization patterns predicting performance on three different monitoring tasks of temporal, verbal, and spatial nature. These tasks were administered to healthy young participants after their EEG was recorded during a resting state session. Behavioral indices of monitoring efficiency were computed for each task and a source-based spectral analysis was performed on participants' resting-state EEG activity. A lateralization index was then computed for each of 75 homologous cortical regions as the right-left difference score for the log-transformed power ratio between beta and alpha frequencies. Finally, skipped Pearson correlations between the lateralization index in each cortical region and behavioral performance of the three monitoring tasks were computed. An intersection among the three tasks showed that right-lateralization in different prefrontal regions, including the middle frontal gyrus, was positively correlated with monitoring abilities across the three tasks. In conclusion, right-lateralized brain mechanisms set the stage for the ability to monitor for targets in the environment, independently of the specific task characteristics. These mechanisms are grounded in hemispheric asymmetry dynamics already observable at rest.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Função Executiva/fisiologia , Lateralidade Funcional/fisiologia , Adulto , Eletroencefalografia/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-31184267

RESUMO

Several studies have reported age-related differences in time estimation, which have been attributed either to a slowing of the pacemaker rate with aging or to impaired attention and/or working resources in older adults. Here, we compared performance of young and older participants on time production/reproduction tasks and on working memory, divided attention, sustained attention and executive attention tasks. Results showed that relative to young participants, older adults significantly under-reproduced and tended to over-produce target durations. Neither attention nor working memory predicted time reproduction and production performance. Conversely, when temporal variability was considered, participants' temporal variability in time production tasks was exclusively accounted for by age, whereas variability in temporal reproduction was also explained by divided attention and working memory. Overall, our results extend previous investigations on timing abilities in the elderly and underscore the importance of divided attention and working memory in the maintenance of a stable representation of durations.


Assuntos
Envelhecimento/fisiologia , Atenção/fisiologia , Função Executiva/fisiologia , Memória de Curto Prazo/fisiologia , Percepção do Tempo/fisiologia , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Neuroimage ; 202: 116097, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415885

RESUMO

The brain predicts the timing of forthcoming events to optimize processes in response to them. Temporal predictions are driven by both our prior expectations on the likely timing of stimulus occurrence and the information conveyed by the passage of time. Specifically, such predictions can be described in terms of the hazard function, that is, the conditional probability that an event will occur, given it has not yet occurred. Events violating expectations cause surprise and often induce updating of prior expectations. While it is well-known that the brain is able to track the temporal hazard of event occurrence, the question of how prior temporal expectations are updated is still unsettled. Here we combined a Bayesian computational approach with brain imaging to map updating of temporal expectations in the human brain. Moreover, since updating is usually highly correlated with surprise, participants performed a task that allowed partially differentiating between the two processes. Results showed that updating and surprise differently modulated activity in areas belonging to two critical networks for cognitive control, the fronto-parietal (FPN) and the cingulo-opercular network (CON). Overall, these data provide a first computational characterization of the neural correlates associated with updating and surprise related to temporal expectation.


Assuntos
Antecipação Psicológica/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Motivação/fisiologia , Adulto , Teorema de Bayes , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Fatores de Tempo , Adulto Jovem
15.
Front Hum Neurosci ; 12: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467632

RESUMO

A consistent body of literature reported that Parkinson's disease (PD) is marked by severe deficits in temporal processing. However, the exact nature of timing problems in PD patients is still elusive. In particular, what remains unclear is whether the temporal dysfunction observed in PD patients regards explicit and/or implicit timing. Explicit timing tasks require participants to attend to the duration of the stimulus, whereas in implicit timing tasks no explicit instruction to process time is received but time still affects performance. In the present study, we investigated temporal ability in PD by comparing 20 PD participants and 20 control participants in both explicit and implicit timing tasks. Specifically, we used a time bisection task to investigate explicit timing and a foreperiod task for implicit timing. Moreover, this is the first study investigating sequential effects in PD participants. Results showed preserved temporal ability in PD participants in the implicit timing task only (i.e., normal foreperiod and sequential effects). By contrast, PD participants failed in the explicit timing task as they displayed shorter perceived durations and higher variability compared to controls. Overall, the dissociation reported here supports the idea that timing can be differentiated according to whether it is explicitly or implicitly processed, and that PD participants are selectively impaired in the explicit processing of time.

16.
Front Hum Neurosci ; 11: 545, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176946

RESUMO

A longstanding debate in psychology concerns the relation between handedness and cognitive functioning. The present study aimed to contribute to this debate by comparing performance of right- and non-right-handers on verbal and spatial Stroop tasks. Previous studies have shown that non-right-handers have better inter-hemispheric interaction and greater access to right hemisphere processes. On this ground, we expected performance of right- and non-right-handers to differ on verbal and spatial Stroop tasks. Specifically, relative to right-handers, non-right-handers should have greater Stroop effect in the color-word Stroop task, for which inter-hemispheric interaction does not seem to be advantageous to performance. By contrast, non-right-handers should be better able to overcome interference in the spatial Stroop task. This is for their preferential access to the right hemisphere dealing with spatial material and their greater inter-hemispheric interaction with the left hemisphere hosting Stroop task processes. Our results confirmed these predictions, showing that handedness and the underlying brain asymmetries may be a useful variable to partly explain individual differences in executive functions.

17.
Behav Brain Res ; 335: 167-173, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28834738

RESUMO

Performance on tasks involving cognitive control such as the Stroop task is often associated with left lateralized brain activations. Based on this neuro-functional evidence, we tested whether leftward structural grey matter asymmetries would also predict inter-individual differences in combatting Stroop interference. To check for the specificity of the results, both a verbal Stroop task and a spatial one were administered to a total of 111 healthy young individuals, for whom T1-weighted magnetic resonance imaging (MRI) images were also acquired. Surface thickness and area estimations were calculated using FreeSurfer. Participants' hemispheres were registered to a symmetric template and Laterality Indices (LI) for the surface thickness and for the area at each vertex in each participant were computed. The correlation of these surface LI measures with the verbal and spatial Stroop effects (incongruent-congruent difference in trial performance) was assessed at each vertex by means of general linear models at the whole-brain level. We found a significant correlation between performance and surface area LI in an inferior posterior temporal cluster (overlapping with the so-called visual word form area, VWFA), with a more left-lateralized area in this region associated with a smaller Stroop effect only in the verbal task. These results point to an involvement of the VWFA for higher-level processes based on word reading, including the suppression of this process when required by the task, and could be interpreted in the context of cross-hemispheric rivalry.


Assuntos
Mapeamento Encefálico/métodos , Dominância Cerebral/fisiologia , Substância Cinzenta/fisiologia , Adulto , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Pré-Frontal/fisiologia , Teste de Stroop , Adulto Jovem
18.
J Cogn Enhanc ; 1(3): 254-267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32226920

RESUMO

Simultaneous interpretation (SI) is a cognitively demanding process that has been associated with enhanced memory and executive functions. It is unclear, however, if the previously evidenced interpreter advantages are developed through training and/or experience with SI or rather represent inherent characteristics that allow success in the field. The present study aimed to disentangle these possibilities through a longitudinal examination of students earning a Master of Conference Interpreting and two control populations. The students were tested at the beginning and end of their programs on measures of memory and executive functioning that have previously demonstrated an interpreter advantage. The results revealed no inherent advantage among the students of interpretation. However, an SI training-specific advantage was revealed in verbal short-term memory; the students of interpretation, but not the two control groups, showed a gain between the testing sessions. This controlled longitudinal study demonstrates that training in simultaneous interpretation is associated with cognitive changes.

19.
PLoS One ; 11(6): e0157731, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27311017

RESUMO

Although human flexible behavior relies on cognitive control, it would be implausible to assume that there is only one, general mode of cognitive control strategy adopted by all individuals. For instance, different reliance on proactive versus reactive control strategies could explain inter-individual variability. In particular, specific life experiences, like a highly demanding training for future Air Traffic Controllers (ATCs), could modulate cognitive control functions. A group of ATC trainees and a matched group of university students were tested longitudinally on task-switching and Stroop paradigms that allowed us to measure indices of cognitive control. The results showed that the ATCs, with respect to the control group, had substantially smaller mixing costs during long cue-target intervals (CTI) and a reduced Stroop interference effect. However, this advantage was present also prior to the training phase. Being more capable in managing multiple task sets and less distracted by interfering events suggests a more efficient selection and maintenance of task relevant information as an inherent characteristic of the ATC group, associated with proactive control. Critically, the training that the ATCs underwent improved their accuracy in general and reduced response time switching costs during short CTIs only. These results indicate a training-induced change in reactive control, which is described as a transient process in charge of stimulus-driven task detection and resolution. This experience-based enhancement of reactive control strategy denotes how cognitive control and executive functions in general can be shaped by real-life training and underlines the importance of experience in explaining inter-individual variability in cognitive functioning.


Assuntos
Aviação , Cognição/fisiologia , Função Executiva/fisiologia , Acontecimentos que Mudam a Vida , Ocupações , Adulto , Estudos de Casos e Controles , Sinais (Psicologia) , Feminino , Humanos , Individualidade , Masculino , Tempo de Reação , Teste de Stroop , Estudantes/psicologia , Análise e Desempenho de Tarefas , Recursos Humanos
20.
Neuropsychologia ; 89: 83-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27263124

RESUMO

While it is well-established that monitoring the environment for the occurrence of relevant events represents a key executive function, it is still unclear whether such a function is mediated by domain-general or domain-specific mechanisms. We investigated this issue by combining event-related potentials (ERPs) with a behavioral paradigm in which monitoring processes (non-monitoring vs. monitoring) and cognitive domains (spatial vs. verbal) were orthogonally manipulated in the same group of participants. They had to categorize 3-dimensional visually presented words on the basis of either spatial or verbal rules. In monitoring blocks, they additionally had to check whether the word displayed a specific spatial configuration or whether it contained a certain consonant. The behavioral results showed slower responses for both spatial and verbal monitoring trials compared to non-monitoring trials. The ERP results revealed that monitoring did not interact with domain, thus suggesting the involvement of common underlying mechanisms. Specifically, monitoring acted on low-level perceptual processes (as expressed by an enhanced visual N1 wave and a sustained posterior negativity for monitoring trials) and on higher-level cognitive processes (involving larger positive modulations by monitoring trials over frontal and parietal scalp regions). The source reconstruction analysis of the ERP data confirmed that monitoring was associated with increased activity in visual areas and in right prefrontal and parietal regions (i.e., superior and inferior frontal gyri and posterior parietal cortex), which previous studies have linked to spatial and temporal monitoring. Our findings extend this research by supporting the domain-general nature of monitoring in the spatial and verbal domains.


Assuntos
Cognição/fisiologia , Potenciais Evocados/fisiologia , Percepção Espacial/fisiologia , Vocabulário , Análise de Variância , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia , Estatística como Assunto , Estudantes , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...