Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(13): 8695-8708, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38495986

RESUMO

Lanthanide-doped upconverting nanoparticles (UCNPs) are ideal candidates for use in biomedicine. The interaction of nanomaterials with biological systems determines whether they are suitable for use in living cells. In-depth knowledge of the nano-bio interactions is therefore a pre-requisite for the development of biomedical applications. The current study evaluates fundamental aspects of the NP-cell interface for square bipyramidal UCNPs containing a LiYF4:Yb3+, Tm3+ core and two different silica surface coatings. Given their importance for mammalian physiology, fibroblast and renal proximal tubule epithelial cells were selected as cellular model systems. We have assessed the toxicity of the UCNPs and measured their impact on the homeostasis of living non-malignant cells. Rigorous analyses were conducted to identify possible toxic and sub-lethal effects of the UCNPs. To this end, we examined biomarkers that reveal if UCNPs induce cell killing or stress. Quantitative measurements demonstrate that short-term exposure to the UCNPs had no profound effects on cell viability, cell size or morphology. Indicators of oxidative, endoplasmic reticulum, or nucleolar stress, and the production of molecular chaperones varied with the surface modification of the UCNPs and the cell type analyzed. These differences emphasize the importance of evaluating cells of diverse origin that are relevant to the intended use of the nanomaterials. Taken together, we established that short-term, our square bipyramidal UCNPs are not toxic to non-malignant fibroblast and proximal renal epithelial cells. Compared with established inducers of cellular stress, these UCNPs have minor effects on cellular homeostasis. Our results build the foundation to explore square bipyramidal UCNPs for future in vivo applications.

2.
ACS Appl Mater Interfaces ; 16(3): 4249-4260, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197400

RESUMO

External stimuli can trigger changes in temperature, concentration, and momentum between micromotors and the medium, causing their propulsion and enabling them to perform different tasks with improved kinetic efficiencies. Light-activated micromotors are attractive systems that achieve improved motion and have the potential for high spatiotemporal control. Photophoretic swarming motion represents an attractive means to induce micromotor movement through the generation of temperature gradients in the medium, enabling the micromotors to move from cold to hot regions. The micromotors studied herein are assembled with Fe3O4 nanoparticles, and NaGdF4:Yb3+,Er3+/NaGdF4:Yb3+ and LiYF4:Yb3+,Tm3+ upconverting nanoparticles. The Fe3O4 nanoparticles were localized to one hemisphere to produce a Janus architecture that facilitates improved upconversion luminescence with the upconverting nanoparticles distributed throughout. Under 976 nm excitation, Fe3O4 nanoparticles generate the temperature gradient, while the upconverting nanoparticles produce visible light that is used for micromotor motion tracking and triggering of reactive oxygen species generation. As such, the motion and application of the micromotors are achieved using a single excitation wavelength. To demonstrate the practicality of this system, curcumin was adsorbed to the micromotor surface and degradation of Rhodamine B was achieved with kinetic rates that were over twice as fast as the static micromotors. The upconversion luminescence was also used to track the motion of the micromotors from a single image frame, providing a convenient means to understand the trajectory of these systems. Together, this system provides a versatile approach to achieving light-driven motion while taking advantage of the potential applications of upconversion luminescence such as tracking and detection, sensing, nanothermometry, particle velocimetry, photodynamic therapy, and pollutant degradation.

3.
Nanoscale ; 15(33): 13583-13594, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37552506

RESUMO

Dye sensitization is a promising approach to enhance the luminescence of lanthanide-doped upconverting nanoparticles. However, the poor photostability of near-infrared dyes hampers their use in practical applications. To address this, commercial IR820 was modified for improved photostability and covalently bonded to amine-functionalized silica-coated LnUCNPs. Two methods of covalent linking were investigated: linking the dye to the surface of the silica shell, and embedding the dye within the silica shell. The photostability of the dyes when embedded in the silica shell exhibited upconversion emissions from NaGdF4:Er3+,Yb3+/NaGdF4:Yb3+ nanoparticles for over four hours of continuous excitation with no change in intensity. To highlight this improvement, the photostable dye-embedded system was successfully utilized for Fenton-type photocatalysis, emphasizing its potential for practical applications. Overall, this study presents a facile strategy to circumvent the overlooked limitations associated with photodegradation, opening up new possibilities for the use of dye-sensitized lanthanide-doped upconverting nanoparticles in a range of fields.

4.
RSC Adv ; 13(26): 17787-17811, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37323462

RESUMO

Our society is indebted to the numerous inventors and scientists who helped bring about the incredible technological advances in modern society that we all take for granted. The importance of knowing the history of these inventions is often underestimated, although our reliance on technology is escalating. Lanthanide luminescence has paved the way for many of these inventions, from lighting and displays to medical advancements and telecommunications. Given the significant role of these materials in our daily lives, knowingly or not, their past and present applications are reviewed. A majority of the discussion is devoted to pointing out the benefits of using lanthanides over other luminescent species. We aimed to give a short outlook outlines promising directions for the development of the considered field. This review aims to provide the reader enough content to further appreciate the benefits that these technologies have brought into our lives, with the perspective of travelling among the past and latest advances in lanthanide research, aiming for an even brighter future.

5.
ACS Appl Bio Mater ; 6(6): 2370-2383, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267436

RESUMO

Glioblastoma multiforme is an aggressive type of brain cancer with high recurrence rates due to the presence of radioresistant cells remaining after tumor resection. Here, we report the development of an X-ray-mediated photodynamic therapy (X-PDT) system using NaLuF4:25% Pr3+ radioluminescent nanoparticles in conjunction with protoporphyrin IX (PPIX), an endogenous photosensitizer that accumulates selectively in cancer cells. Conveniently, 5-aminolevulinic acid (5-ALA), the prodrug that is administered for PDT, is the only drug approved for fluorescence-guided resection of glioblastoma, enabling dual detection and treatment of malignant cells. NaLuF4:Pr3+ nanoparticles were synthesized and spectroscopically evaluated at a range of Pr3+ concentrations. This generated radioluminescent nanoparticles with strong emissions from the 1S0 excited state of Pr3+, which overlaps with the Soret band of PPIX to perform photodynamic therapy. The spectral overlap between the nanoparticles and PPIX improved treatment outcomes for U251 cells, which were used as a model for the thin tumor margin. In addition to sensitizing PPIX to induce X-PDT, our nanoparticles exhibit strong radiosensitizing properties through a radiation dose-enhancement effect. We evaluate the effects of the nanoparticles alone and in combination with PPIX on viability, death, stress, senescence, and proliferation. Collectively, our results demonstrate this as a strong proof of concept for nanomedicine.


Assuntos
Glioblastoma , Fotoquimioterapia , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Fotoquimioterapia/métodos , Raios X , Linhagem Celular Tumoral , Ácido Aminolevulínico/farmacologia
6.
Angew Chem Int Ed Engl ; 62(24): e202304591, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37040148

RESUMO

Lanthanide upconversion luminescence in nanoparticles has prompted continuous breakthroughs in information storage, temperature sensing, and biomedical applications, among others. Achieving upconversion luminescence at the molecular scale is still a critical challenge in modern chemistry. In this work, we explored the upconversion luminescence of solution dispersions of co-crystals composed of discrete mononuclear Yb(DBM)3 Bpy and Eu(DBM)3 Bpy complexes (DBM: dibenzoylmethane, Bpy: 2,2'-bipyridine). The 613 nm emission of Eu3+ was observed under excitation of Yb3+ at 980 nm. From the series of molecular assemblies studied, the most intense luminescence was obtained for a 1 : 1 molar ratio of Yb3+ : Eu3+ , resulting in a high quantum yield of 0.67 % at 2.1 W cm-2 . The structure and energy transfer mechanism of the assemblies were fully characterized. This is the first example of an Eu3+ -based upconverting system composed of two discrete mononuclear lanthanide complexes present as co-crystals in non-deuterated solution.

8.
Nanoscale ; 15(7): 2997-3031, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722934

RESUMO

Halide perovskite nanocrystals (HPNCs) have emerged at the forefront of nanomaterials research over the past two decades. The physicochemical and optoelectronic properties of these inorganic semiconductor nanoparticles can be modulated through the introduction of various ligands. The use of biomolecules as ligands has been demonstrated to improve the stability, luminescence, conductivity and biocompatibility of HPNCs. The rapid advancement of this field relies on a strong understanding of how the structure and properties of biomolecules influences their interactions with HPNCs, as well as their potential to extend applications of HPNCs towards biological applications. This review addresses the role of several classes of biomolecules (amino acids, proteins, carbohydrates, nucleotides, etc.) that have shown promise for improving the performance of HPNCs and their potential applications. Specifically, we have reviewed the recent advances on incorporating biomolecules with HP nanomaterials on the formation, physicochemical properties, and stability of HP compounds. We have also shed light on the potential for using HPs in biological and environmental applications by compiling some recent of proof-of-concept demonstrations. Overall, this review aims to guide the field towards incorporating biomolecules into the next-generation of high-performance HPNCs for biological and environmental applications.


Assuntos
Compostos Inorgânicos , Nanopartículas , Compostos de Cálcio , Óxidos
9.
Angew Chem Int Ed Engl ; 62(4): e202216269, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36437239

RESUMO

Lanthanide-doped metal-organic frameworks (Ln-MOFs) have versatile luminescence properties, however it is challenging to achieve lanthanide-based upconversion luminescence in these materials. Here, 1,3,5-benzenetricarboxylic acid (BTC) and trivalent Yb3+ ions were used to generate crystalline Yb-BTC MOF 1D-microrods with upconversion luminescence under near infrared excitation via cooperative luminescence. Subsequently, the Yb-BTC MOFs were doped with a variety of different lanthanides to evaluate the potential for Yb3+ -based upconversion and energy transfer. Yb-BTC MOFs doped with Er3+ , Ho3+ , Tb3+ , and Eu3+ ions exhibit both the cooperative luminescence from Yb3+ and the characteristic emission bands of these ions under 980 nm irradiation. In contrast, only the 497 nm upconversion emission band from Yb3+ is observed in the MOFs doped with Tm3+ , Pr3+ , Sm3+ , and Dy3+ . The effects of different dopants on the efficiency of cooperative luminescence were established and will provide guidance for the exploitation of Ln-MOFs exhibiting upconversion.

10.
Nanoscale Adv ; 4(2): 608-618, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36132705

RESUMO

Dye sensitization is a promising route to enhance luminescence from lanthanide-doped upconverting nanoparticles (LnUCNPs) by improving the photon harvesting capability of LnUCNPs through the use of dye molecules, characterized by higher absorption coefficients. The literature does not fully address the poor photostability of NIR dyes, hindering solution-based applications. The improvements achieved by dye-sensitized LnUCNPs are usually obtained by comparison with non-dye sensitized LnUCNPs. This comparison results in exciting the LnUCNPs at different wavelengths with respect to the dye-sensitized LnUCNPs or at the same wavelengths, where, however, the non-dye sensitized LnUCNPs do not absorb. Both these comparisons are hardly conclusive for a quantification of the improvements achieved by dye-sensitization. Both shortcomings were addressed by studying the photodegradation via thorough spectroscopic evaluations of a 4-nitrothiophenol-modified and unmodified IR820-LnUCNP system. The modified IR820 dye system exhibits a 200% enhancement in the emission of NaGdF4:Er3+,Yb3+/NaGdF4:Yb3+ nanoparticles relative to the unmodified IR820-sensitized LnUCNPs and emits for over twice the duration, demonstrating a substantial improvement over previous dye-LnUCNP systems. Upconversion dynamics between the dyes and Er3+ establish the importance of back-transfer dynamics in modulating the dye-LnUCNP luminescence. Quantum yield measurements further illustrate the mechanism of sensitization and increased efficiency of this new nanosystem.

11.
Polymers (Basel) ; 14(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956634

RESUMO

Drug nanoencapsulation increases the availability, pharmacokinetics, and concentration efficiency for therapeutic regimes. Azobenzene light-responsive molecules experience a hydrophobicity change from a polar to an apolar tendency by trans-cis photoisomerization upon UV irradiation. Polymeric photoresponse nanoparticles (PPNPs) based on azobenzene compounds and biopolymers such as chitosan derivatives show prospects of photodelivering drugs into cells with accelerated kinetics, enhancing their therapeutic effect. PPNP biocompatibility studies detect the safe concentrations for their administration and reduce the chance of side effects, improving the effectiveness of a potential treatment. Here, we report on a PPNP biocompatibility evaluation of viability and the first genotoxicity study of azobenzene-based PPNPs. Cell line models from human ventricular cardiomyocytes (RL14), as well as mouse fibroblasts (NIH3T3) as proof of concept, were exposed to different concentrations of azobenzene-based PPNPs and their precursors to evaluate the consequences on mitochondrial metabolism (MTT assay), the number of viable cells (trypan blue exclusion test), and deoxyribonucleic acid (DNA) damage (comet assay). Lethal concentrations of 50 (LC50) of the PPNPs and their precursors were higher than the required drug release and synthesis concentrations. The PPNPs affected the cell membrane at concentrations higher than 2 mg/mL, and lower concentrations exhibited lesser damage to cellular genetic material. An azobenzene derivative functionalized with a biopolymer to assemble PPNPs demonstrated biocompatibility with the evaluated cell lines. The PPNPs encapsulated Nile red and dofetilide separately as model and antiarrhythmic drugs, respectively, and delivered upon UV irradiation, proving the phototriggered drug release concept. Biocompatible PPNPs are a promising technology for fast drug release with high cell interaction opening new opportunities for azobenzene biomedical applications.

12.
J Phys Chem B ; 125(48): 13132-13136, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34813703

RESUMO

Emission bands from thermally coupled states in lanthanide-doped nanoparticles have been studied for ratiometric nanothermometry in biological applications. Unfortunately certain factors such as water absorption distort the intensity, limiting the accuracy of ratiometric nanothermometry. However, the decay time of such states does not suffer from such distortions. We introduce the decay time of the 3H4 state in Yb3+, Tm3+-doped nanoparticles for improved nanothermometry. The strong 800 nm upconversion emission exists in the first biological transparency window. This is the first use of a single upconversion band for lifetime nanothermometry.


Assuntos
Nanopartículas , Eletrônica
13.
Angew Chem Int Ed Engl ; 60(44): 23790-23796, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34476872

RESUMO

Modulating the emission wavelengths of materials has always been a primary focus of fluorescence technology. Nanocrystals (NCs) doped with lanthanide ions with rich energy levels can produce a variety of emissions at different excitation wavelengths. However, the control of multimodal emissions of these ions has remained a challenge. Herein, we present a new composition of Er3+ -based lanthanide NCs with color-switchable output under irradiation with 980, 808, or 1535 nm light for information security. The variation of excitation wavelengths changes the intensity ratio of visible (Vis)/near-infrared (NIR-II) emissions. Taking advantage of the Vis/NIR-II multimodal emissions of NCs and deep learning, we successfully demonstrated the storage and decoding of visible light information in pork tissue.

14.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800176

RESUMO

Highly controllable anisotropic shell growth is essential for further engineering the function and properties of lanthanide-doped luminescence nanocrystals, especially in some of the advanced applications such as multi-mode bioimaging, security coding and three-dimensional (3D) display. However, the understanding of the transversal shell growth mechanism is still limited today, because the shell growth direction is impacted by multiple complex factors, such as the anisotropy of surface ligand-binding energy, anisotropic core-shell lattice mismatch, the size of cores and varied shell crystalline stability. Herein, we report a highly controlled transversal shell growth method for hexagonal sodium rare-earth tetrafluoride (ß-NaLnF4) nanocrystals. Exploiting the relationship between reaction temperature and shell growth direction, we found that the shell growth direction could be tuned from longitudinal to transversal by decreasing the reaction temperature from 310 °C to 280 °C. In addition to the reaction temperature, we also discussed the roles of other factors in the transversal shell growth of nanocrystals. A suitable core size and a relative lower shell precursor concentration could promote transversal shell growth, although different shell hosts played a minor role in changing the shell growth direction.

15.
Nanoscale Adv ; 3(5): 1375-1381, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132856

RESUMO

Radioluminescent nanomaterials have garnered significant attention in the past decade due to their potential to perform X-ray mediated photodynamic therapy (X-PDT). Many of these materials are assumed to produce singlet oxygen based on a single assay. Herein we demonstrate that multiple assays are required to confidently determine whether singlet oxygen or other reactive oxygen species are being produced through type I or type II PDT mechanisms. Rose Bengal and Merocyanine 540 photosensitizers were loaded into mesoporous silica-coated NaLuF4:Dy3+,Gd3+ nanoparticles and the combination of ABDA, DPBF, and NaN3 assays along with electron paramagnetic resonance were employed to determine that superoxide and hydroxyl radicals were exclusively produced from this system under X-ray excitation. Knowledge of the correct PDT mechanism is crucial for informing what types of disease may be best suited for treatment using PDT nanosystems.

16.
Nanoscale ; 12(47): 24169-24176, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33283824

RESUMO

Heat transfer and thermal properties at the nanoscale can be challenging to obtain experimentally. These are potentially relevant for understanding thermoregulation in cells. Experimental data from the transient heating regime in conjunction with a model based on the energy conservation enable the determination of the specific heat capacities for all components of a nanoconstruct, namely an upconverting nanoparticle and its conformal lipid bilayer coating. This approach benefits from a very simple, cost-effective and non-invasive optical setup to measure the thermal parameters at the nanoscale. The time-dependent model developed herein lays the foundation to describe the dynamics of heat transfer at the nanoscale and were used to understand the heat dissipation by lipid bilayers.


Assuntos
Bicamadas Lipídicas , Nanopartículas , Calefação , Temperatura Alta
17.
Nanoscale ; 12(40): 20759-20766, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33030192

RESUMO

Trivalent praseodymium exhibits a wide range of luminescent phenomena when doped into a variety of different materials. Herein, radioluminescent NaLuF4:20%Pr3+ nanoparticles are studied. Four different samples of this composition were prepared ranging from 400-70 nm in size. Kinetic studies of radioluminescence as a function of X-ray irradiation time revealed a decrease in the emissions originating from the 1S0 level, due to the formation or optical activation of defects during excitation, and a simultaneous increase in the visible emissions resulting from the lower optical levels. Thermoluminescence measurements elucidated that a local de-trapping mechanism was responsible for the increase in steady state emission and persistent luminescence originating from the lower optical levels. The results and mechanism described through this study serve to provide a novel nanoparticle composition with versatile luminescent properties and provides experimental evidence in favor of a local trapping model.

18.
Adv Mater ; 32(42): e2002266, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32924221

RESUMO

Evaluation of particle dynamics at the nano- and microscale poses a challenge to the development of novel velocimetry techniques. Established optical methods implement external or internal calibrations of the emission profiles by varying the particle velocity and are limited to specific experimental conditions. The proposed multiemission particle velocimetry approach aims to introduce a new concept for a luminescent probe, which guarantees accurate velocity measurements at the microscale, independent of the particle concentration or experimental setup, and without need for calibration. The simplicity of these analyses relies on the intrinsic luminescence dynamics of core-shell upconverting nanoparticles. Upon excitation with a focused near-infrared pulsed laser, the nanoparticle emits photons at different wavelengths. The time interval between emissions from different excited states is independent of the local environment or particle velocity. The velocity of the particles is calculated by measuring the distance between the maxima of two different emissions and dividing it by the known difference in luminescence lifetimes. This method is demonstrated using simple digital imaging of nanoparticles flowing in 75-150 µm diameter capillaries. Using this novel approach typically results in a relative standard deviation of the experimental velocities of 5% or lower without any calibration.

19.
ACS Nano ; 14(4): 4087-4095, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32282184

RESUMO

We introduce a nonlinear all-optical theranostics protocol based on the excitation wavelength decoupling between imaging and photoinduced damage of human cancer cells labeled by bismuth ferrite (BFO) harmonic nanoparticles (HNPs). To characterize the damage process, we rely on a scheme for in situ temperature monitoring based on upconversion nanoparticles: by spectrally resolving the emission of silica coated NaGdF4:Yb3+/Er3+ nanoparticles in close vicinity of a BFO HNP, we show that the photointeraction upon NIR-I excitation at high irradiance is associated with a temperature increase >100 °C. The observed laser-cell interaction implies a permanent change of the BFO nonlinear optical properties, which can be used as a proxy to read out the outcome of a theranostics procedure combining imaging at 980 nm and selective cell damage at 830 nm. The approach has potential applications to monitor and treat lesions within NIR light penetration depth in tissues.


Assuntos
Nanopartículas , Fluoretos , Gadolínio , Humanos , Dióxido de Silício
20.
ACS Appl Bio Mater ; 3(7): 4358-4369, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025434

RESUMO

Because of their unique physicochemical properties, lanthanide-doped upconverting nanoparticles (Ln-UCNPs) have exceptional potential for biological applications. However, the use in biological systems is hampered by the limited understanding of their bionano interactions. Our multidisciplinary study has generated these insights through in-depth and quantitative analyses. The Ln-UCNPs examined here are spherical, monodisperse, and stable in aqueous environments. We show that Ln-UCNPs were associated with HeLa (cervical cancer) and LLC-PK1 (renal proximal tubule) cells and were nontoxic over a wide concentration range. Multiple biomarkers were assessed to monitor the cellular homeostasis in Ln-UCNP-treated cells. To this end, we evaluated the nuclear lamina, nucleoli, and nuclear transport factors. Single-cell analyses quantified the impact on Nrf2 and NF-κB, two transcription factors that control stress and immune responses. Moreover, we measured Ln-UCNP-induced changes in the abundance of molecular chaperones. Collectively, in vitro studies confirmed that Ln-UCNPs are nontoxic and trigger minor cellular stress responses. This lack of toxicity was verified in vivo, using the model organism Caenorhabditis elegans. The compatibility with biological systems prompted us to assess Ln-UCNPs as potential contrast agents for magnetic resonance imaging. We demonstrated that the Ln-UCNPs examined here were especially suitable as T2 contrast agents; they clearly outperformed the clinically used Gadovist. Taken together, our interdisciplinary work provides robust evidence for the nontoxicity of Ln-UCNPs. This sets the stage for the translation of Ln-UCNP for use in complex biological systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...