Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(12)2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36548748

RESUMO

A new green competitive ELISA for aflatoxin M1 quantification in raw milk was developed. This diagnostic tool is based on an anti AFM1 mAb produced by plant molecular farming in alternative to classical systems. Our assay, showing an IC50 below 25 ng/L, fits with the requirements of EU legislation limits for AFM1 (50 ng/L). Optimal accuracy was achieved in correspondence of the decision levels (25 and 50 ng/L), and the assay enabled AFM1 quantification in the range 5-110 ng/L, with limit of detection 3 ng/L. Moreover, to evaluate a real applicability in diagnostics, raw milk-spiked samples were analysed, achieving satisfactory recovery rates of AFM1. In conclusion, an efficient and ready-to-use diagnostic assay for the quantification of aflatoxin M1 in milk, based on a plant-produced recombinant mAb, has been successfully developed.


Assuntos
Aflatoxina M1 , Anticorpos , Animais , Ensaio de Imunoadsorção Enzimática , Aflatoxina M1/análise , Imunoensaio , Leite/química , Contaminação de Alimentos/análise
2.
Front Plant Sci ; 13: 956741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131799

RESUMO

Monoclonal antibodies are considered to be highly effective therapeutic tools for the treatment of mild to moderate COVID-19 patients. In the present work, we describe the production of two SARS-CoV-2 human IgG1 monoclonal antibodies recognizing the spike protein receptor-binding domain (RBD) and endowed with neutralizing activity (nAbs) in plants. The first one, mAbJ08-MUT, was previously isolated from a COVID-19 convalescent patient and Fc-engineered to prolong the half-life and reduce the risk of antibody-dependent enhancement. This nAb produced in mammalian cells, delivered in a single intramuscular administration during a Phase I clinical study, was shown to (i) be safe and effectively protect against major variants of concern, and (ii) have some neutralizing activity against the recently emerged omicron variant in a cytopathic-effect-based microneutralization assay (100% inhibitory concentration, IC100 of 15 µg/mL). The second antibody, mAb675, previously isolated from a vaccinated individual, showed an intermediate neutralization activity against SARS-CoV-2 variants. Different accumulation levels of mAbJ08-MUT and mAb675 were observed after transient agroinfiltration in Nicotiana benthamiana plants knocked-out for xylosil and fucosil transferases, leading to yields of ~35 and 150 mg/kg of fresh leaf mass, respectively. After purification, as a result of the proteolytic events affecting the hinge-CH2 region, a higher degradation of mAb675 was observed, compared to mAbJ08-MUT (~18% vs. ~1%, respectively). Both nAbs showed a human-like glycosylation profile, and were able to specifically bind to RBD and compete with angiotensin-converting enzyme 2 binding in vitro. SARS-CoV-2 neutralization assay against the original virus isolated in Wuhan demonstrated the high neutralization potency of the plant-produced mAbJ08-MUT, with levels (IC100 < 17 ng/mL) comparable to those of the cognate antibody produced in a Chinese hamster ovary cell line; conversely, mAb675 exhibited a medium neutralization potency (IC100 ~ 200 ng/mL). All these data confirm that plant expression platforms may represent a convenient and rapid production system of potent nAbs to be used both in therapy and diagnostics in pandemic emergencies.

3.
Front Cell Infect Microbiol ; 10: 581066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117734

RESUMO

Pore-forming proteins (PFPs) are a group of functionally versatile molecules distributed in all domains of life, and several microbial pathogens notably use members of this class of proteins as cytotoxic effectors. Among pathogenic protists, Entamoeba histolytica, and Naegleria fowleri display a range of pore-forming toxins belonging to the Saposin-Like Proteins (Saplip) family: Amoebapores and Naegleriapores. Following the genome sequencing of Trichomonas vaginalis, we identified a gene family of 12 predicted saposin-like proteins (TvSaplips): this work focuses on investigating the potential role of TvSaplips as cytopathogenetic effectors. We provide evidence that TvSaplip12 gene expression is potently upregulated upon T. vaginalis contact with target cells. We cloned and expressed recombinant TvSaplip12 in planta and we demonstrate haemolytic, cytotoxic, and bactericidal activities of rTvSaplip12 in vitro. Also, evidence for TvSaplip subcellular discrete distribution in cytoplasmic granules is presented. Altogether, our results highlight the importance of TvSaplip in T. vaginalis pathogenesis, depicting its involvement in the cytolytic and bactericidal activities during the infection process, leading to predation on host cells and resident vaginal microbiota for essential nutrients acquisition. This hence suggests a potential key role for TvSaplip12 in T. vaginalis pathogenesis as a candidate Trichopore.


Assuntos
Entamoeba histolytica , Trichomonas vaginalis , Entamoeba histolytica/genética , Feminino , Humanos , Porinas , Nicotiana , Trichomonas vaginalis/genética , Vagina
4.
BMC Biotechnol ; 20(1): 15, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164664

RESUMO

BACKGROUND: Infections caused by fungi are often refractory to conventional therapies and urgently require the development of novel options, such as immunotherapy. To produce therapeutic antibodies, a plant-based expression platform is an attractive biotechnological strategy compared to mammalian cell cultures. In addition to whole plants, hairy roots (HR) cultures can be used, representing an expression system easy to build up, with indefinite growth while handled under containment conditions. RESULTS: In this study the production in HR of a recombinant antibody, proved to be a good candidate for human immunotherapy against fungal infections, is reported. Expression and secretion of this antibody, in an engineered single chain (scFvFc) format, by HR from Nicotiana benthamiana and Solanum lycopersicum have been evaluated with the aim of directly using the deriving extract or culture medium against pathogenic fungi. Although both Solanaceae HR showed good expression levels (up to 68 mg/kg), an optimization of rhizosecretion was only obtained for N. benthamiana HR. A preliminary assessment to explain this result highlighted the fact that not only the presence of proteases, but also the chemical characteristics of the growth medium, can influence antibody yield, with implications on recombinant protein production in HR. Finally, the antifungal activity of scFvFc 2G8 antibody produced in N. benthamiana HR was evaluated in Candida albicans growth inhibition assays, evidencing encouraging results. CONCLUSIONS: Production of this anti-fungal antibody in HR of N. benthamiana and S. lycopersicum elucidated factors affecting pharming in this system and allowed to obtain promising ready-to-use immunotherapeutics against C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Anticorpos de Cadeia Única/farmacologia , Solanaceae/citologia , Candida albicans/efeitos dos fármacos , Recombinação Homóloga , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Engenharia de Proteínas , Proteínas Recombinantes/farmacologia , Anticorpos de Cadeia Única/genética , Solanaceae/genética , Nicotiana/citologia , Nicotiana/genética
5.
J Sci Food Agric ; 98(2): 737-750, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28675480

RESUMO

BACKGROUND: Lettuce is a leafy vegetable that is extensively commercialized as a ready-to-eat product because of its widespread use in human nutrition as salad. It is well known that washing treatments can severely affect the quality and shelf-life of ready-to-eat vegetables. The study presented here evaluated the effect of two washing procedures on fresh-cut lettuce during storage. RESULTS: An omics approach was applied to reveal global changes at molecular level induced by peracetic acid washing in comparison with sodium hypochlorite treatment. Microbiological analyses were also performed to quantify total bacterial abundance and composition. The study revealed wide metabolic alterations induced by the two sanitizers. In particular, transcriptomic and proteomic analyses pointed out a number of transcripts and proteins differentially accumulated in response to peracetic acid washing, mainly occurring on the first day of storage. In parallel, different microbiota composition and significant reduction in total bacterial load following washing were also observed. CONCLUSION: The results provide useful information for the fresh-cut industry to select an appropriate washing procedure preserving fresh-like attributes as much as possible during storage of the end product. Molecular evidence indicated peracetic acid to be a valid alternative to sodium hypochlorite as sanitizer solution. © 2017 Society of Chemical Industry.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lactuca/metabolismo , Ácido Peracético/farmacologia , Hipoclorito de Sódio/farmacologia , Eletroforese em Gel Bidimensional/métodos , Lactuca/efeitos dos fármacos , Espectrometria de Massas/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Fragmento de Restrição , Proteômica/métodos , Transcriptoma
6.
Biotechnol Bioeng ; 114(12): 2729-2738, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28832951

RESUMO

Immunoglobulins A (IgA) are crucially involved in protection of human mucosal surfaces from microbial pathogens. In this work, we devised and expressed in plants recombinant chimeric antifungal antibodies (Abs) of isotype A (IgA1, IgA2, and scFvFcA1), derived from a murine mAb directed to the fungal cell wall polysaccharide ß-glucan which had proven able to confer protection against multiple pathogenic fungi. All recombinant IgA (rIgA) were expressed and correctly assembled in dimeric form in plants and evaluated for yield, antigen-binding efficiency and antifungal properties in vitro, in comparison with a chimeric IgG1 version. Production yields and binding efficiency to purified ß-glucans showed significant variations not only between Abs of different isotypes but also between the different IgA formats. Moreover, only the dimeric IgA1 was able to strongly bind cells of the fungal pathogen Candida albicans and to restrain its adhesion to human epithelial cells. Our data indicate that IgG to IgA switch and differences in molecular structure among different rIgA formats can impact expression in plant and biological activity of anti-ß-glucans Abs and provide new insights for the design of recombinant IgA as anti-infective immunotherapeutics, whose potential is still poorly investigated.


Assuntos
Candida albicans/fisiologia , Adesão Celular/fisiologia , Imunoglobulina A/biossíntese , Imunoglobulina A/genética , Folhas de Planta/metabolismo , Proteínas Recombinantes/biossíntese , beta-Glucanas/metabolismo , Dimerização , Folhas de Planta/genética , Proteínas Recombinantes/genética
7.
FEMS Microbiol Lett ; 363(1): fnv209, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26511951

RESUMO

With the growing demand of fresh-cut vegetables, a variety of packaging films are produced specifically to improve safety and quality of the fresh vegetables over the storage period. The aim of our work was to evaluate the influence of different packaging films on the quality of fresh-cut lettuce analyzing changes in bacterial community composition and modifications at the proteome level, by means of culture-dependent/culture-independent methods and differential gel electrophoresis combined with mass spectrometry analysis. Total viable counts indicated the presence of a highly variable and complex microbial flora, around a mean value of 6.26 log10 CFU g(-1). Analysis of terminal-restriction fragment length polymorphism data indicated that bacterial communities changed with packaging films and time, showing differences in community composition and diversity indices between the commercially available package (F) and the new packages (A and C), in the first days after packaging. Also proteomic analysis revealed significant changes, involving proteins related to energy metabolism, photosynthesis, plant defense and oxidative stress processes, between F and A/C packages. In conclusion, microbiological and proteomic analysis have proved to be powerful tools to provide new insights into both the composition of leaf-associated bacterial communities and protein content of fresh-cut lettuce during the shelf-life storage process.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Embalagem de Alimentos , Lactuca/química , Lactuca/microbiologia , Proteoma/análise , Contagem de Colônia Microbiana , Eletroforese , Genômica , Espectrometria de Massas , Técnicas Microbiológicas , Polimorfismo de Fragmento de Restrição , Proteômica
8.
J Proteomics ; 96: 200-22, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24220303

RESUMO

To shed light on the molecular mechanisms associated with aberrant accumulation of c-Myb in chronic myeloid leukemia, comparative proteomic analysis was performed on c-myb RNAi-specifically silenced K562 cells, sampled on a time-course basis. 2D-DIGE technology highlighted 37 differentially-represented proteins that were further characterized by nLC-ESI-LIT-MS/MS and validated by western blotting and qRT-PCR analysis. Most of the deregulated proteins were related to protein folding, energy/primary metabolism, transcription/translation regulation and oxidative stress response. Protein network analysis suggested that glycolysis, gluconeogenesis and protein ubiquitination biosynthesis pathways were highly represented, confirming also the pivotal role of c-Myc. A specific reduced representation was observed for glyceraldehyde-3-phosphate-dehydrogenase and α-enolase, suggesting a possible role of c-Myb in the activation of aerobic glycolysis. A reduced amount was also observed for stress responsive heat shock 70kDa protein and 78kDa glucose-regulated protein, previously identified as direct targets of c-Myb. Among over-represented proteins, worth mentioning is the chromatin modifier chromobox protein homolog 3 that contributes to silencing of E2F- and Myc-responsive genes in quiescent G0 cells. Data here presented, while providing novel insights onto the molecular mechanisms underlying c-Myb activity, indicate potential protein biomarkers for monitoring the progression of chronic myeloid leukemia. BIOLOGICAL SIGNIFICANCE: Myeloid leukemia is a malignant disease of the hematopoietic system in which cells of myeloid lineages accumulate to an undifferentiated state. In particular, it was shown that an aberrant accumulation of the c-Myb transcriptional factor is associated with the suppression of normal differentiation processes promoting the development of the hematopoietic malignancies. Many efforts have been recently made to identify novel genes directly targeted by c-Myb at a transcriptome level. In this work, we originally describe a differential proteomic approach to facilitate the comprehension of the regulation of the protein networks exerted by c-Myb. Our study reveals a complex network of proteins regulated by c-Myb. The functional heterogeneity of these proteins emphasizes the pleiotropic role of c-Myb as a regulator of genes that are crucial for energy production and stress response in leukemia. In fact, variations in glyceraldehyde-3-phosphate-dehydrogenase and α-enolase suggest a possible role of c-Myb in the activation of aerobic glycolysis. Moreover, significant differences were found for heat shock 70kDa protein and 78kDa glucose-regulated protein known as direct c-Myb targets. This work highlights potential protein biomarkers to look into disease progression and to develop translational medicine approaches in myeloid leukemia.


Assuntos
Biomarcadores Tumorais/biossíntese , Inativação Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteoma/biossíntese , Proteínas Proto-Oncogênicas c-myb/biossíntese , Biomarcadores Tumorais/genética , Metabolismo Energético/genética , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Estresse Oxidativo/genética , Biossíntese de Proteínas/genética , Proteoma/genética , Fase de Repouso do Ciclo Celular/genética , Transcrição Gênica/genética
9.
Plant Biotechnol J ; 9(7): 776-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21265996

RESUMO

There is an increasing interest in the development of therapeutic antibodies (Ab) to improve the control of fungal pathogens, but none of these reagents is available for clinical use. We previously described a murine monoclonal antibody (mAb 2G8) targeting ß-glucan, a cell wall polysaccharide common to most pathogenic fungi, which conferred significant protection against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans in animal models. Transfer of this wide-spectrum, antifungal mAb into the clinical setting would allow the control of most frequent fungal infections in many different categories of patients. To this aim, two chimeric mouse-human Ab derivatives from mAb 2G8, in the format of complete IgG or scFv-Fc, were generated, transiently expressed in Nicotiana benthamiana plants and purified from leaves with high yields (approximately 50 mg Ab/kg of plant tissues). Both recombinant Abs fully retained the ß-glucan-binding specificity and the antifungal activities of the cognate murine mAb against C. albicans. In fact, they recognized preferentially ß1,3-linked glucan molecules present at the fungal cell surface and directly inhibited the growth of C. albicans and its adhesion to human epithelial cells in vitro. In addition, both the IgG and the scFv-Fc promoted C. albicans killing by isolated, human polymorphonuclear neutrophils in ex vivo assays and conferred significant antifungal protection in animal models of systemic or vulvovaginal C. albicans infection. These recombinant Abs represent valuable molecules for developing novel, plant-derived immunotherapeutics against candidiasis and, possibly, other fungal diseases.


Assuntos
Anticorpos Antifúngicos/imunologia , Candida albicans/imunologia , Candidíase/terapia , Imunoterapia , Nicotiana/imunologia , beta-Glucanas/imunologia , Animais , Anticorpos Antifúngicos/biossíntese , Anticorpos Antifúngicos/genética , Anticorpos Antifúngicos/uso terapêutico , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Fungos/imunologia , Aspergillus fumigatus/imunologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Candidíase/microbiologia , Adesão Celular/imunologia , Linhagem Celular , Parede Celular/imunologia , Cryptococcus neoformans/imunologia , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Camundongos , Modelos Animais , Micoses/microbiologia , Micoses/terapia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Planticorpos/genética , Planticorpos/imunologia , Planticorpos/metabolismo , Planticorpos/uso terapêutico , Ratos , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Nicotiana/genética , beta-Glucanas/metabolismo
10.
Theor Appl Genet ; 113(7): 1233-45, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16906405

RESUMO

Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defence. A number of PGIPs have been characterized from dicot species, whereas only a few data are available from monocots. Database searches and genome-specific cloning strategies allowed the identification of four rice (Oryza sativa L.) and two wheat (Triticum aestivum L.) Pgip genes. The rice Pgip genes (Ospgip1, Ospgip2, Ospgip3 and Ospgip4) are distributed over a 30 kbp region of the short arm of chromosome 5, whereas the wheat Pgip genes, Tapgip1 and Tapgip2, are localized on the short arm of chromosome 7B and 7D, respectively. Deduced amino acid sequences show the typical LRR modular organization and a conserved distribution of the eight cysteines at the N- and C-terminal regions. Sequence comparison suggests that monocot and dicot PGIPs form two separate clusters sharing about 40% identity and shows that this value is close to the extent of variability observed within each cluster. Gene-specific RT-PCR and biochemical analyses demonstrate that both Ospgips and Tapgips are expressed in the whole plant or in a tissue-specific manner, and that OsPGIP1, lacking an entire LRR repeat, is an active inhibitor of fungal polygalacturonases. This last finding can contribute to define the molecular features of PG-PGIP interactions and highlights that the genetic events that can generate variability at the Pgip locus are not only limited to substitutions or small insertions/deletions, as so far reported, but can also involve variation in the number of LRRs.


Assuntos
Variação Genética , Oryza/genética , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Análise por Conglomerados , Primers do DNA , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
11.
Plant Physiol ; 135(4): 2424-35, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15299124

RESUMO

Polygalacturonase-inhibiting proteins (PGIPs) are extracellular plant inhibitors of fungal endopolygalacturonases (PGs) that belong to the superfamily of Leu-rich repeat proteins. We have characterized the full complement of pgip genes in the bean (Phaseolus vulgaris) genotype BAT93. This comprises four clustered members that span a 50-kb region and, based on their similarity, form two pairs (Pvpgip1/Pvpgip2 and Pvpgip3/Pvpgip4). Characterization of the encoded products revealed both partial redundancy and subfunctionalization against fungal-derived PGs. Notably, the pair PvPGIP3/PvPGIP4 also inhibited PGs of two mirid bugs (Lygus rugulipennis and Adelphocoris lineolatus). Characterization of Pvpgip genes of Pinto bean showed variations limited to single synonymous substitutions or small deletions. A three-amino acid deletion encompassing a residue previously identified as crucial for recognition of PG of Fusarium moniliforme was responsible for the inability of BAT93 PvPGIP2 to inhibit this enzyme. Consistent with the large variations observed in the promoter sequences, reverse transcription-PCR expression analysis revealed that the different family members differentially respond to elicitors, wounding, and salicylic acid. We conclude that both biochemical and regulatory redundancy and subfunctionalization of pgip genes are important for the adaptation of plants to pathogenic fungi and phytophagous insects.


Assuntos
Phaseolus/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Animais , Fungos , Genoma de Planta , Imunidade Inata , Insetos , Dados de Sequência Molecular , Phaseolus/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
12.
Plant Physiol ; 135(3): 1294-304, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15247378

RESUMO

Pectins are a highly complex family of cell wall polysaccharides comprised of homogalacturonan (HGA), rhamnogalacturonan I and rhamnogalacturonan II. We have specifically modified HGA in both tobacco (Nicotiana tabacum) and Arabidopsis by expressing the endopolygalacturonase II of Aspergillus niger (AnPGII). Cell walls of transgenic tobacco plants showed a 25% reduction in GalUA content as compared with the wild type and a reduced content of deesterified HGA as detected by antibody labeling. Neutral sugars remained unchanged apart from a slight increase of Rha, Ara, and Gal. Both transgenic tobacco and Arabidopsis were dwarfed, indicating that unesterified HGA is a critical factor for plant cell growth. The dwarf phenotypes were associated with AnPGII activity as demonstrated by the observation that the mutant phenotype of tobacco was completely reverted by crossing the dwarfed plants with plants expressing PGIP2, a strong inhibitor of AnPGII. The mutant phenotype in Arabidopsis did not appear when transformation was performed with a gene encoding AnPGII inactivated by site directed mutagenesis.


Assuntos
Aspergillus niger/enzimologia , Nicotiana/metabolismo , Pectinas/metabolismo , Poligalacturonase/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA , Caules de Planta/enzimologia , Plantas Geneticamente Modificadas , Poligalacturonase/isolamento & purificação , Poligalacturonase/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...