Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 93(5): 592-610, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23528847

RESUMO

The mdx mouse, the most widely used animal model of Duchenne muscular dystrophy (DMD), develops a seriously impaired blood-brain barrier (BBB). As glucocorticoids are used clinically to delay the progression of DMD, we evaluated the effects of chronic treatment with α-methyl-prednisolone (PDN) on the expression of structural proteins and markers in the brain and skeletal muscle of the mdx mouse. We analyzed the immunocytochemical and biochemical expression of four BBB markers, including endothelial ZO-1 and occludin, desmin in pericytes, and glial fibrillary acidic protein (GFAP) in glial cells, and the expression of the short dystrophin isoform Dp 71, the dystrophin-associated proteins (DAPs), and aquaporin-4 (AQP4) and α-ß dystroglycan (DG) in the brain. We evaluated the BBB integrity of mdx and PDN-treated mdx mice by means of intravascular injection of horseradish peroxidase (HRP). The expression of DAPs was also assessed in gastrocnemius muscles and correlated with utrophin expression, and laminin content was measured in the muscle and brain. PDN treatment induced a significant increase in the mRNA and protein content of the BBB markers; a reduction in the phosphorylation of occludin in the brain and of AQP4/ß DG in both tissues; an increase of Dp71 protein content; and an increase of both mRNA and protein levels of the AQP4/α-ß DG complex. The latter was associated with enhanced laminin and utrophin in the muscle. The HRP assay demonstrated functional restoration of the BBB in the PDN-treated mdx mice. Specifically, mdx mice showed extensive perivascular labeling due to escape of the marker, while HRP was exclusively intravascular in the PDN-treated mice and the controls. These data illustrate for the first time that PDN reverses the BBB alterations in the mdx mouse and re-establishes the proper expression and phosphorylation of ß-DG in both the BBB and skeletal muscle. Further, PDN partially protects against muscle damage. The reduction in AQP4 and occludin phosphorylation, coupled with their anchoring to glial and endothelial membranes in PDN-treated mice, suggests that the drug may target the glial and endothelial cells. Our results suggest a novel mechanism for PDN action on cerebral and muscular function, restoring the link between DAPs and the extracellular matrix, most likely through protein kinase inactivation.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Proteínas Associadas à Distrofina/metabolismo , Glucocorticoides/farmacologia , Músculo Esquelético/efeitos dos fármacos , Prednisolona/farmacologia , Animais , Aquaporina 4/metabolismo , Membrana Basal/metabolismo , Barreira Hematoencefálica/metabolismo , Desmina/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes/química , Laminina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Microscopia de Fluorescência , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne , Pericitos/metabolismo
2.
PLoS One ; 6(5): e19189, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21573153

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a lethal, progressive muscle wasting disease caused by a loss of sarcolemmal bound dystrophin, which results in the death of the muscle fibers leading to the gradual depletion of skeletal muscle. There is significant evidence demonstrating that increasing levels of the dystrophin-related protein, utrophin, in mouse models results in sarcolemmal bound utrophin and prevents the muscular dystrophy pathology. The aim of this work was to develop a small molecule which increases the levels of utrophin in muscle and thus has therapeutic potential. METHODOLOGY AND PRINCIPAL FINDINGS: We describe the in vivo activity of SMT C1100; the first orally bioavailable small molecule utrophin upregulator. Once-a-day daily-dosing with SMT C1100 reduces a number of the pathological effects of dystrophin deficiency. Treatment results in reduced pathology, better muscle physiology leading to an increase in overall strength, and an ability to resist fatigue after forced exercise; a surrogate for the six minute walk test currently recommended as the pivotal outcome measure in human trials for DMD. CONCLUSIONS AND SIGNIFICANCE: This study demonstrates proof-of-principle for the use of in vitro screening methods in allowing identification of pharmacological agents for utrophin transcriptional upregulation. The best compound identified, SMT C1100, demonstrated significant disease modifying effects in DMD models. Our data warrant the full evaluation of this compound in clinical trials in DMD patients.


Assuntos
Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular Animal/metabolismo , Utrofina/metabolismo , Animais , Células Cultivadas , Eletrofisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular Animal/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Utrofina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...