Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 165: 105615, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154391

RESUMO

Exposure to stressors during puberty can disrupt normal development and possibly increase susceptibility to neurodegenerative disorders later in life. However, the mechanisms underlying the relationship between pubertal stress exposure and neurodegeneration remain unclear. As such, the current study was designed to examine the effects of pubertal antimicrobial (AMNS) and lipopolysaccharide (LPS) treatments on intestinal and blood-brain-barrier (BBB) permeability in male and female mice. Moreover, we also examined the sex-specific effects of pubertal AMNS and LPS treatments on gross motor activity, heart rate, and core body temperature. At four weeks of age, male and female CD1 mice were implanted with the G2 HR E-Mitter telemetry system. At five weeks of age, mice received 200 µL of broad-spectrum antimicrobial or water, through oral gavage, twice daily for seven days. Mice received an intraperitoneal injection of either saline or LPS at six weeks of age. BBB and intestinal permeability were examined 24 h, 72 h, and one week post-LPS/saline treatment. Telemetric data was collected for 48 h post-LPS/saline treatment. The results showed that pubertal AMNS and LPS treatments increased sickness behaviours and decreased body temperature and heart rate, in a sex-dependent manner. Furthermore, pubertal AMNS and LPS treatments resulted in sex-dependent regional increases in BBB permeability 24 h and 72 h post-LPS/saline treatment, while global increases in BBB permeability were only observed one week post-LPS/saline treatment. These results further our understanding of the combined effects of AMNS and LPS treatments on physiology and on the enduring negative changes observed following pubertal exposure to stressors.

2.
Neuroscience ; 557: 67-80, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39127344

RESUMO

Puberty is a sensitive developmental period during which stressors can cause lasting brain and behavioural deficits. While the acute effects of pubertal lipopolysaccharide (LPS) and antimicrobial (AMNS) treatments are known, their enduring impacts on neurodegeneration-related mechanisms and behaviours remain unclear. This study examined these effects in male and female mice. At five weeks old, mice received 200ul of either broad-spectrum antimicrobials or water through oral gavage twice daily for seven days. At six weeks of age, they received an intraperitoneal injection of either saline or LPS. Four weeks later, adult mice underwent neurodegeneration-related behavioural tests, including the rotarod, forepaw stride length, reversed grid hang, open field, and buried pellet tests. Two days after the final test, brain and ileal samples were collected. Results showed that female mice treated with both AMNS and LPS exhibited deficits in neuromuscular strength, while males treated with LPS alone showed increased anxiety-like behaviours. Males treated with AMNS alone had decreased sigma-1 receptor (S1R) expression in the cornu ammonis 1 (CA1) and dentate gyrus (DG), while females treated with both AMNS and LPS had decreased S1R expression. Additionally, males treated with either LPS or AMNS had lower glial-derived neurotrophic factor receptor alpha-1 (GFRA1) expression in the primary motor cortex (M1) than females. Mice treated with LPS alone had decreased GFRA1 expression in the DG and decreased S1R expression in the secondary motor cortex (M2). These findings suggest that pubertal AMNS and LPS treatments may lead to enduring changes in biomarkers and behaviours related to neurodegeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA